Explicit non-asymptotic bounds for the distance to the first-order Edgeworth expansion

Journal Article (2023)
Author(s)

Alexis Derumigny (TU Delft - Statistics)

Lucas Girard (CREST-ENSAE)

Yannick Guyonvarch (Télécom ParisTech)

Research Group
Statistics
Copyright
© 2023 Alexis Derumigny, Lucas Girard, Yannick Guyonvarch
DOI related publication
https://doi.org/10.1007/s13171-023-00320-y)
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Alexis Derumigny, Lucas Girard, Yannick Guyonvarch
Research Group
Statistics
Volume number
85
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In this article, we study bounds on the uniform distance between the cumulative distribution function of a standardized sum of independent centered random variables with moments of order four and its first-order Edgeworth expansion. Existing bounds are sharpened in two frameworks: when the variables are independent but not identically distributed and in the case of independent and identically distributed random variables. Improvements of these bounds are derived if the third moment of the distribution is zero. We also provide adapted versions of these bounds under additional regularity constraints on the tail behavior of the characteristic function. We finally present an application of our results to the lack of validity of one-sided tests based on the normal approximation of the mean for a fixed sample size.

Files

S13171_023_00320_y.pdf
(pdf | 1.14 Mb)
- Embargo expired in 11-03-2024
License info not available