Hard equality constrained integer knapsacks
Karen I. Aardal (Universiteit Utrecht)
Arjen K. Lenstra (Eindhoven University of Technology, Citibank)
More Info
expand_more
Abstract
We consider the following integer feasibility problem: “Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?” Some instances of this type have been found to be extremely hard to solve by standard methods such as branch-and-bound, even if the number of variables is as small as ten. We observe that not only the sizes of the numbers a 0, a 1,..., a n, but also their structure, have a large impact on the difficulty of the instances. Moreover, we demonstrate that the characteristics that make the instances so difficult to solve by branch-and-bound make the solution of a certain reformulation of the problem almost trivial. We accompany our results by a small computational study.
No files available
Metadata only record. There are no files for this record.