Extreme precipitation return levels for multiple durations on a global scale
Gaby Gründemann (TU Delft - Water Resources, University of Saskatchewan)
Enrico Zorzetto (Princeton University)
Hylke E. Beck (King Abdullah University of Science and Technology)
M.A. Schleiss (TU Delft - Atmospheric Remote Sensing)
Nick van de van de Giesen (TU Delft - Water Resources)
Marco Marani (Università degli Studi di Padova)
R. J. van der Ent (TU Delft - Water Resources, University of New South Wales)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Quantifying the magnitude and frequency of extreme precipitation events is key in translating climate observations to planning and engineering design. Past efforts have mostly focused on the estimation of daily extremes using gauge observations. Recent development of high-resolution global precipitation products, now allow estimation of global extremes. This research aims to quantitatively characterize the spatiotemporal behavior of precipitation extremes, by calculating extreme precipitation return levels for multiple durations on the global domain using the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset. Both classical and novel extreme value distributions are used to provide insight into the spatial patterns of precipitation extremes. Our results show that the traditional Generalized Extreme Value (GEV) distribution and Peak-Over-Threshold (POT) methods, which only use the largest events to estimate precipitation extremes, are not spatially coherent. The recently developed Metastatistical Extreme Value (MEV) distribution, that includes all precipitation events, leads to smoother spatial patterns of local extremes. For durations of 5 and 10 days, however, there are less events per year to fit the distribution (37 and 22 on average, respectively), leading to larger inter-annual variability and possible overestimation of the extremes. While the GEV and POT methods predict a consistent shift from heavy to thin tails with increasing duration, the MEV method predicts a relatively constant heaviness of the tail for any precipitation duration, opening up an important research question on what is the ‘correct’ tail behavior of extreme precipitation for different durations. The generated extreme precipitation return levels and corresponding parameters are provided as the Global Precipitation EXtremes (GPEX) dataset. These data can be useful for studying the underlying physical processes causing the spatiotemporal variations of the heaviness of extreme precipitation distributions.