Entanglement between a Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wavelength

Journal Article (2019)
Author(s)

A. Tchebotareva (TU Delft - QuTech Advanced Research Centre, TU Delft - BUS/General, TNO)

S.L.N. Hermans (TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft, TU Delft - QID/Hanson Lab)

P.C. Humphreys (TU Delft - QuTech Advanced Research Centre, TU Delft - QID/Hanson Lab, Kavli institute of nanoscience Delft)

Dirk Voigt (TU Delft - QuTech Advanced Research Centre, TNO, TU Delft - Business Development)

Peter Harmsma (TU Delft - QuTech Advanced Research Centre, TU Delft - QID/Hanson Lab, TNO)

Lun K. Cheng (TNO)

Ad L. Verlaan (TNO)

Niels Dijkhuizen (TNO)

Wim De Jong (TNO)

A.E. Dréau (TU Delft - QID/Hanson Lab, TU Delft - QuTech Advanced Research Centre, Kavli institute of nanoscience Delft, Université de Montpellier)

R. Hanson (TU Delft - QN/Hanson Lab, Kavli institute of nanoscience Delft, TU Delft - QID/Hanson Lab, TU Delft - QuTech Advanced Research Centre)

Research Group
BUS/General
Copyright
© 2019 A. Tchebotareva, S.L.N. Hermans, P.C. Humphreys, D. Voigt, P.J. Harmsma, Lun K. Cheng, Ad L. Verlaan, Niels Dijkhuizen, Wim De Jong, A.E. Dréau, R. Hanson
DOI related publication
https://doi.org/10.1103/PhysRevLett.123.063601
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 A. Tchebotareva, S.L.N. Hermans, P.C. Humphreys, D. Voigt, P.J. Harmsma, Lun K. Cheng, Ad L. Verlaan, Niels Dijkhuizen, Wim De Jong, A.E. Dréau, R. Hanson
Research Group
BUS/General
Issue number
6
Volume number
123
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We report on the realization and verification of quantum entanglement between a nitrogen-vacancy electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequency conversion that transfers the entanglement to a 1588 nm photon. We characterize the resulting state by correlation measurements in different bases and find a lower bound to the Bell state fidelity of ≥0.77±0.03. This result presents an important step towards extending quantum networks via optical fiber infrastructure.

Files

PhysRevLett.123.063601.pdf
(pdf | 0.836 Mb)
License info not available