Authored

11 records found

Near-term quantum-repeater experiments with nitrogen-vacancy centers

Overcoming the limitations of direct transmission

Quantum channels enable the implementation of communication tasks inaccessible to their classical counterparts. The most famous example is the distribution of secret key. However, in the absence of quantum repeaters, the rate at which these tasks can be performed is dictated by t ...
We report on the realization of a multi-node quantum network. Using the network, we have demonstrated three protocols; generation of a entangled state shared by all nodes, entanglement swapping and quantum teleportation between non-neighboring nodes.@en
Quantum networks distributed over distances greater than a few kilometres will be limited by the time required for information to propagate between nodes. We analyse protocols that are able to circumvent this bottleneck by employing multi-qubit nodes and multiplexing. For each pr ...
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qub ...
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network prim ...
Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7. Moving beyond current two-node networks 8-13 requires the rat ...
We probe dephasing mechanisms within a quantum network node consisting of a single nitrogen-vacancy center electron spin that is hyperfine coupled to surrounding C13 nuclear-spin quantum memories. Previous studies have analyzed memory dephasing caused by the stochastic electron-s ...
We report on the realization and verification of quantum entanglement between a nitrogen-vacancy electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequen ...
We experimentally demonstrate the preservation of entanglement between an NV spin and a photon upon quantum frequency conversion to the Telecom band. This is a crucial step in realizing long-distance quantum networks.@en
Entanglement-based quantum networks will provide exciting opportunities for science and engineering. Here, we report the realization of a three-node quantum network by generating distributed multi-partite entangled states and performing entanglement swapping through an intermedia ...
Entanglement-based quantum networks will provide exciting opportunities for science and engineering. Here, we report the realization of a three-node quantum network by generating distributed multi-partite entangled states and performing entanglement swapping through an intermedia ...