HB

H.K.C. Beukers

13 records found

We present our optimized diamond fabrication process based on quasi-isotropic crystal-plane-dependent reactive-ion-etching at low and high temperature plasma regime. We demonstrate successful integration of SnV centers in diamond waveguides showing quantum non-linear effects. We ...
Color centers integrated with nanophotonic devices have emerged as a compelling platform for quantum science and technology. Here, we integrate tin-vacancy centers in a diamond waveguide and investigate the interaction with light at the single-photon level in both reflection and ...
The generation of entanglement between distant quantum systems is at the core of quantum networking. In recent years, numerous theoretical protocols for remote-entanglement generation have been proposed, many of which have been experimentally realized. Here, we provide a modular ...
Diamond tin-vacancy centers have emerged as a promising platform for quantum information science and technology. A key challenge for their use in more-complex quantum experiments and scalable applications is the ability to prepare the center in the desired charge state with the o ...
We demonstrate heralded initialization of charge state and optical transition frequency of diamond tin-vacancy centers, using (off-)resonant lasers, photon detection and real-time logic. Using this, we show frequency tunability > 100 MHz and strongly improved optical coherence ...
We show coupling of an SnV center to a diamond waveguide of 20% with almost transform-limited optical transitions. Besides, we show control over the SnV spin qubit and extend its coherence to over a millisecond.@en

Multisize Electrode Field-of-View

Validation by High Resolution Gadolinium-Enhanced Cardiac Magnetic Resonance

Background: Voltage mapping to detect ventricular scar is important for guiding catheter ablation, but the field-of-view of unipolar, bipolar, conventional, and microelectrodes as it relates to the extent of viable myocardium (VM) is not well defined. Objectives: The purpose of t ...

Entangling remote qubits using the single-photon protocol

An in-depth theoretical and experimental study

The generation of entanglement between remote matter qubits has developed into a key capability for fundamental investigations as well as for emerging quantum technologies. In the single-photon, protocol entanglement is heralded by generation of qubit-photon entangled states and ...
We report on the realization of a multi-node quantum network. Using the network, we have demonstrated three protocols; generation of a entangled state shared by all nodes, entanglement swapping and quantum teleportation between non-neighboring nodes.@en
We fabricate single tin-vacancy centres in diamond, we perform spectroscopy and coherent population trapping to verify optical driving of the spin states. We investigate the integration in diamond waveguides to realise an efficient spin-photon interface.@en
Future quantum internet applications will derive their power from the ability to share quantum information across the network1,2. Quantum teleportation allows for the reliable transfer of quantum information between distant nodes, even in the presence of highly lossy n ...
Entanglement-based quantum networks will provide exciting opportunities for science and engineering. Here, we report the realization of a three-node quantum network by generating distributed multi-partite entangled states and performing entanglement swapping through an intermedia ...
The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication qub ...