RV

Raymond Vermeulen

14 records found

Authored

We report on the realization of a multi-node quantum network. Using the network, we have demonstrated three protocols; generation of a entangled state shared by all nodes, entanglement swapping and quantum teleportation between non-neighboring nodes.

@en

The forthcoming quantum Internet is poised to allow new applications not possible with the conventional Internet. The ability for both quantum and conventional networking equipment to coexist on the same fiber network would facilitate the deployment and adoption of coming quan ...

The distribution of entangled states across the nodes of a future quantum internet will unlock fundamentally new technologies. Here, we report on the realization of a three-node entanglement-based quantum network. We combine remote quantum nodes based on diamond communication ...

Entanglement-based quantum networks will provide exciting opportunities for science and engineering. Here, we report the realization of a three-node quantum network by generating distributed multi-partite entangled states and performing entanglement swapping through an interme ...

eQASM

An executable quantum instruction set architecture

A widely-used quantum programming paradigm comprises of both the data flow and control flow. Existing quantum hardware cannot well support the control flow, significantly limiting the range of quantum software executable on the hardware. By analyzing the constraints in the con ...

This article proposes a quantum microarchitecture, QuMA. Flexible programmability of a quantum processor is achieved by multilevel instructions decoding, abstracting analog control into digital control, and translating instruction execution with non-deterministic timing into e ...

Electrostatic confinement in semiconductors provides a flexible platform for the emulation of interacting electrons in a two-dimensional lattice, including in the presence of gauge fields. This combination offers the potential to realize a wide host of quantum phases. Capacitance ...

Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7. Moving beyond current two-node networks 8- ...

Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system sta ...

We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition me ...

Loophole-free Bell test using electron spins in diamond

Second experiment and additional analysis

The recently reported violation of a Bell inequality using entangled electronic spins in diamonds (Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist theories of nature. Here we report on data from a second Bell experiment using th ...

We present two pulse schemes to actively deplete measurement photons from a readout resonator in the nonlinear dispersive regime of circuit QED. One method uses digital feedback conditioned on the measurement outcome, while the other is unconditional. In the absence of analyti ...

In July 2015 we observed the first Bell inequality violation with all experimental loopholes closed. We discuss this experiment as well as new results on the road towards a large-scale quantum network of diamond spins.@en