TT

T.H. Taminiau

47 records found

Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise ...
The goal of future quantum networks is to enable new internet applications that are impossible to achieve using only classical communication1, 2–3. Up to now, demonstrations of quantum network applications4, 5–6 and functionalities7, 8, 9, 10, 11–12 on quantum processors have bee ...
The ability to sense and control nuclear spins near solid-state defects might enable a range of quantum technologies. Dynamically decoupled radio-frequency (DDrf) control offers a high degree of design flexibility and long electron-spin coherence times. However, previous studies ...
The decoherence of a central electron spin due to the dynamics of a coupled electron-spin bath is a core problem in solid-state spin physics. Ensemble experiments have studied the central spin coherence in detail, but such experiments average out the underlying quantum dynamics o ...
Spins associated to solid-state color centers are a promising platform for investigating quantum computation and quantum networks. Recent experiments have demonstrated multiqubit quantum processors, optical interconnects, and basic quantum error-correction protocols. One of the k ...
Solid-state single-photon emitters provide a versatile platform for exploring quantum technologies such as optically connected quantum networks. A key challenge is to ensure the optical coherence and spectral stability of the emitters. Here, we introduce a high-bandwidth ‘check-p ...
We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.
Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding ...
We discuss measurements on single NV centers in isotopically purified diamond and show coherent optical transitions combined with enhanced electron and carbon spin coherence. These results open avenues for new quantum network applications.
In the search for scalable, fault-tolerant quantum computing, distributed quantum computers are promising candidates. These systems can be realized in large-scale quantum networks or condensed onto a single chip with closely situated nodes. We present a framework for numerical si ...
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro ...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat ...
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over ...
Nuclear quadrupolar resonance (NQR) spectroscopy reveals chemical bonding patterns in materials and molecules through the unique coupling between nuclear spins and local fields. However, traditional NQR techniques require macroscopic ensembles of nuclei to yield a detectable sign ...
Efficient hyperpolarization of nuclear spins via optically active defect centers, such as the nitrogen vacancy (NV) center in diamond, has great potential for enhancing NMR-based quantum information processing and nanoscale magnetic resonance imaging. Recently, pulse-based protoc ...
We demonstrate interference of photons emitted by remote, spectrally distinct NV-centers. Quantum frequency conversion at the nodes brings the photons to the same wavelength in the telecom L-band, compatible with entanglement generation at metropolitan scale.
Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3–8, elementary quantum algorithms8–11 and non-fault-tolerant error ...
Understanding and protecting the coherence of individual quantum systems is a central challenge in quantum science and technology. Over the past decades, a rich variety of methods to extend coherence have been developed. A complementary approach is to look for naturally occurring ...
Entanglement distribution over quantum networks has the promise of realizing fundamentally new technologies. Entanglement between separated quantum processing nodes has been achieved on several experimental platforms in the past decade. To move toward metropolitan-scale quantum n ...
Quantum networks can enable quantum communication and modular quantum computation. A powerful approach is to use multi-qubit nodes that provide quantum memory and computational power. Nuclear spins associated with defects in diamond are promising qubits for this role. However, de ...