Circular Image

117 records found

Continuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To addr ...
This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in weak inversion to achieve continuous operation from room temperature (RT) down to cryogenic temperatures. Their accuracy limitations due to curvature, body effect, and mismatch are in ...
We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.@en
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro ...
Design, simulation, analysis and verification methodologies are crucial for developing electronic circuits and systems at large. Whereas long-standing EDA software is used in the semiconductor technology, there is no counterpart for quantum computing systems yet. Although the qua ...
The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperatur ...
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This a ...
This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive over ...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat ...
Addressing the advancement toward large-scale quantum computers, this article presents the first four-level pulse amplitude modulation (PAM4) wireline transmitter (TX) operating at cryogenic temperatures (CTs). With quantum computers scaling up toward thousands of quantum bits (q ...
Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum-computing platforms, t ...
This paper presents a floating inverter amplifier (FIA) that performs high-linearity amplification and sampling while driving a 2<inline-formula> <tex-math notation="LaTeX">$\times$</tex-math> </inline-formula> time-interleaved (TI) SAR ADC, operating from ...
Quantum computing is poised to solve practically useful problems which are computationally intractable for classical supercomputers. However, the current generation of quantum computers are limited by errors that may only partially be mitigated by developing higher-quality qubits ...
Over the past decade, significant progress in quantum technologies has been made, and hence, engineering of these systems has become an important research area. Many researchers have become interested in studying ways in which classical integrated circuits can be used to compleme ...
The cryogenic electronic interface for quantum pro-cessors requires cryo-CMOS embedded memories that cover a wide range of specifications. The temperature dependence of device parameters, such as the threshold voltage, the gate/subthreshold leakage, and the variability, severely ...
Quantum computers process information stored in quantum bits (qubits), which must be controlled and read out by a traditional electronic interface. Co-designing and cooptimizing such a quantum-classical complex system requires efficient simulators to emulate the qubits and their ...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering th ...
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via q ...
As big strides were being made in many science fields in the 1970s and 80s, faster computation for solving problems in molecular biology, semiconductor technology, aeronautics, particle physics, etc., was at the forefront of research. Parallel and super-computers were introduced, ...
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qub ...