JG

Authored

14 records found

This article presents a 4-to-5GHz LC oscillator operating at 4.2K for quantum computing applications. The phase noise (PN) specification of the oscillator is derived based on the control fidelity for a single-qubit operation. To reveal the substantial gap between the theoretical ...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering th ...
This article presents a low-jitter and low-spur charge-sampling phase-locked loop (CSPLL). A charge-domain sub-sampling phase detector is introduced to achieve a high phase-detection gain and to reduce the PLL in-band phase noise. Even without employing any power-hungry isolation ...
This paper presents a charge-sampling PLL (CSPLL), that demonstrates the best reported jitter-power FOM of-258.9 dB thanks to its high phase-detection gain and to the removal of the power-hungry buffer driving the phase detector. It also achieves-65 dBc of reference spur by both ...
Quantum computers have gained widespread interest from both industry and academia in the last decade as they are very promising for solving problems intractable by classical computers. However, there is a limited number of qubits in current quantum processors, which impedes the p ...
This paper presents a 15b cryo-CMOS DAC for multiplexed spin-qubit biasing implemented in a 22-nm FinFET process. The integrating-DAC architecture and the robust digitally-assisted high-voltage output stage enable a low power dissipation (157W) and small area (0.08mm2) independen ...
LC VCOs with low phase noise (PN) and an octave frequency-tuning range (FTR) are required for multistandard communication devices, software-defined radios, and wireline data links. A viable popular approach is to exploit multicore mode-switching VCOs for two reasons: (1) their PN ...
In a fractional-N PLL, it is beneficial to minimize the input range of its phase detector (PD) as it promotes better linearity and higher PD gain for suppressing noise contributions of the following loop components. This can be done by canceling the predicted instantaneous time o ...
Low-power, low phase noise (PN) cryogenic frequency generation is required for the control electronics of quantum computers. To avoid limiting the performance of quantum bits, the frequency noise of a PLL should be < 1.9 kHz rms [1]. However, it is challenging for RF oscillators, ...
In quantum computing (QC) systems, cryogenic electronic interfaces can address the scalability and sheer interconnect complexity of the control/readout of thousands of quantum bits (qubits) required to execute practical quantum algorithms [1]. As shown in Fig.1-top, a frequency s ...
Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for running ...
Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for running ...
Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for running ...
In this article, we present a 4.5-5.1-GHz fractional-N digitally intensive phase-locked loop (DPLL) capable of maintaining its performance in face of a large supply ripple, thus enabling a direct connection to a switched-mode dc-dc converter. Supply pushing of its inductor-capaci ...

Contributed

1 records found

With the emergence of new communication standards like Fifth-­Generation New Radio (5G NR), technologies are being developed to exploit millimeter­ wave (mm-­wave) frequency bands from 30­300 GHz, for their advantage of high bandwidth availability. Generation of carrier frequenci ...