MB
M. Babaie
109 records found
1
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryo
...
Spins associated to solid-state color centers are a promising platform for investigating quantum computation and quantum networks. Recent experiments have demonstrated multiqubit quantum processors, optical interconnects, and basic quantum error-correction protocols. One of the k
...
Continuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To addr
...
This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in weak inversion to achieve continuous operation from room temperature (RT) down to cryogenic temperatures. Their accuracy limitations due to curvature, body effect, and mismatch are in
...
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This a
...
Parasitic coupling between the building blocks within a fractional- N phase-locked loop (PLL) can result in noticeable spurs in its output spectrum, thus affecting the PLL’s usability in ultralow jitter applications. In this article, we focus on a chief contributor—“self-interfer
...
The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperatur
...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat
...
Addressing the advancement toward large-scale quantum computers, this article presents the first four-level pulse amplitude modulation (PAM4) wireline transmitter (TX) operating at cryogenic temperatures (CTs). With quantum computers scaling up toward thousands of quantum bits (q
...
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro
...
Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum-computing platforms, t
...
We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.
This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive over
...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering th
...
This article presents a wideband blocker tolerant receiver (RX) for fifth-generation (5G) user equipment applications. Two programmable zeros around the channel bandwidth are introduced to sufficiently suppress the close-in blockers of 5G applications. Since the effect of zeros g
...
In this article, we present a low-power digital phase-locked loop (PLL)-based phase modulator targeting low error vector magnitude (EVM). We introduce a new non-uniform clock compensation (NUCC) scheme to tackle an EVM degradation resulting from the beneficial use of a time-varyi
...
Over the past decade, significant progress in quantum technologies has been made, and hence, engineering of these systems has become an important research area. Many researchers have become interested in studying ways in which classical integrated circuits can be used to compleme
...
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qub
...
This article introduces a low-jitter low-spur fractional-N phase-locked loop (PLL) adopting a new concept of a time-mode arithmetic unit (TAU) for phase error extraction. The TAU is a time-signal processor that calculates the weighted sum of input time offsets. It processes two i
...
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via q
...