MB

M. Babaie

109 records found

Spins associated to solid-state color centers are a promising platform for investigating quantum computation and quantum networks. Recent experiments have demonstrated multiqubit quantum processors, optical interconnects, and basic quantum error-correction protocols. One of the k ...
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryo ...
Parasitic coupling between the building blocks within a fractional- N phase-locked loop (PLL) can result in noticeable spurs in its output spectrum, thus affecting the PLL’s usability in ultralow jitter applications. In this article, we focus on a chief contributor—“self-interfer ...
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This a ...
This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive over ...
This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in weak inversion to achieve continuous operation from room temperature (RT) down to cryogenic temperatures. Their accuracy limitations due to curvature, body effect, and mismatch are in ...
We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro ...
The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperatur ...
Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum-computing platforms, t ...
Addressing the advancement toward large-scale quantum computers, this article presents the first four-level pulse amplitude modulation (PAM4) wireline transmitter (TX) operating at cryogenic temperatures (CTs). With quantum computers scaling up toward thousands of quantum bits (q ...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat ...
Continuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To addr ...
By introducing three different techniques, this article, for the first time, presents a wideband highly linear receiver (RX) capable of handling blocking scenarios in fifth-generation (5G) microcell base station applications. First, a parallel preselect filter is introduced to sa ...
Recently, the so-called sub-6GHz band of the 5G new radio (NR) has been extended to 7.125GHz to address the relentless customer demand for higher data-rate communication. This demands a new design approach for the local area base-station (LA-BS) receivers (RXs) to cover a wide op ...
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via q ...
The cryogenic electronic interface for quantum pro-cessors requires cryo-CMOS embedded memories that cover a wide range of specifications. The temperature dependence of device parameters, such as the threshold voltage, the gate/subthreshold leakage, and the variability, severely ...
Cryogenic CMOS (cryo-CMOS) circuits are often hindered by the cryogenic threshold-voltage increase. To mitigate such an increase, a forward body biasing (FBB) technique in bulk CMOS is proposed, which can operate up to the nominal supply without problematic leakage currents, than ...
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qub ...
In this contribution, we describe the modeling approaches and the characterization procedures used to develop accurate standard models for cryogenic, probe-level, calibrations substrates.The key electrical and mechanical parameters of the impedance terminations and the lines used ...