MB
M. Babaie
107 records found
1
Spins associated to solid-state color centers are a promising platform for investigating quantum computation and quantum networks. Recent experiments have demonstrated multiqubit quantum processors, optical interconnects, and basic quantum error-correction protocols. One of the k
...
Addressing the advancement toward large-scale quantum computers, this article presents the first four-level pulse amplitude modulation (PAM4) wireline transmitter (TX) operating at cryogenic temperatures (CTs). With quantum computers scaling up toward thousands of quantum bits (q
...
We realize high-fidelity gates for the two-qubit system formed by NV center. Using gate set tomography, we report gate fidelities exceeding 99%, and analyze the origin of the errors.
Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum-computing platforms, t
...
This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive over
...
The interface electronics needed for quantum processors require cryogenic CMOS (cryo-CMOS) embedded digital memories covering a wide range of specifications. To identify the optimum architecture for each specific application, this article presents a benchmark from room temperatur
...
Continuous rounds of quantum error correction (QEC) are essential to achieve faulttolerant quantum computers (QCs). In each QEC cycle, thousands of ancilla quantum bits (qubits) must be read out faster than the qubits' decoherence time (<<T2∗~120μs for spin qubits). To addr
...
Striving toward a scalable quantum processor, this article presents the first cryo-CMOS quantum bit (qubit) controller targeting color centers in diamond. Color-center qubits enable a modular architecture that allows for the 3-D integration of photonics, cryo-CMOS control electro
...
In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This a
...
This article presents a family of sub-1-V, fully-CMOS voltage references adopting MOS devices in weak inversion to achieve continuous operation from room temperature (RT) down to cryogenic temperatures. Their accuracy limitations due to curvature, body effect, and mismatch are in
...
Color-center quantum bits (qubits), such as the Nitrogen-Vacancy center (NV) in diamond, have demonstrated entanglement between remote (>1.3km) qubits and excellent coherence times [1], all while operating at a few Kelvins. Compared to other qubit technologies typically operat
...
The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via q
...
Recently, the so-called sub-6GHz band of the 5G new radio (NR) has been extended to 7.125GHz to address the relentless customer demand for higher data-rate communication. This demands a new design approach for the local area base-station (LA-BS) receivers (RXs) to cover a wide op
...
In this article, we present a low-power digital phase-locked loop (PLL)-based phase modulator targeting low error vector magnitude (EVM). We introduce a new non-uniform clock compensation (NUCC) scheme to tackle an EVM degradation resulting from the beneficial use of a time-varyi
...
This article introduces a low-jitter low-spur fractional-N phase-locked loop (PLL) adopting a new concept of a time-mode arithmetic unit (TAU) for phase error extraction. The TAU is a time-signal processor that calculates the weighted sum of input time offsets. It processes two i
...
State-of-the-art quantum computers already comprise hundreds of cryogenic quantum bits (qubits), and prototypes with over 10k qubits are currently being developed. Such large-scale systems require local cryogenic electronics for qubit control and readout, leaving the digital cont
...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering th
...
Cryogenic CMOS (cryo-CMOS) circuits are often hindered by the cryogenic threshold-voltage increase. To mitigate such an increase, a forward body biasing (FBB) technique in bulk CMOS is proposed, which can operate up to the nominal supply without problematic leakage currents, than
...
By introducing three different techniques, this article, for the first time, presents a wideband highly linear receiver (RX) capable of handling blocking scenarios in fifth-generation (5G) microcell base station applications. First, a parallel preselect filter is introduced to sa
...
Over the past decade, significant progress in quantum technologies has been made, and hence, engineering of these systems has become an important research area. Many researchers have become interested in studying ways in which classical integrated circuits can be used to compleme
...