MV
M. Veldhorst
info
Please Note
<p>This page displays the records of the person named above and is not linked to a unique person identifier. This record may need to be merged to a profile.</p>
83 records found
1
Quantum computers require the systematic operation of qubits with high fidelity. For holes in germanium, the spin-orbit interaction allows for electric, fast and high-fidelity qubit gates. However, the strong g-tensor anisotropy of holes in germanium and their sensitivity to the
...
Spin qubits in germanium gate-defined quantum dots have made considerable progress within the last few years, partially due to their strong spin-orbit coupling and site-dependent g-tensors. While this characteristic of the g-factors removes the need for micromagnets and allows fo
...
Micromagnet-enabled electric-dipole spin resonance (EDSR) is an established method for high-fidelity single-spin control in silicon, although so far experiments have been restricted to one-dimensional arrays. In contrast, qubit control based on hopping spins has recently emerged
...
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that defi
...
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryo
...
Disorder in the heterogeneous material stack of semiconductor spin qubit systems introduces noise that compromises quantum information processing, posing a challenge to coherently control large-scale quantum devices. Here we exploit low-disorder epitaxial, strained quantum wells
...
Semiconductor spin qubits have emerged as a promising platform for quantum computing, following a significant improvement in their control fidelities over recent years. Increasing the qubit count remains challenging, beginning with the fabrication of small features and complex fa
...
As one of the few group IV materials with the potential to host superconductor–semiconductor hybrid devices, planar germanium hosting proximitized quantum dots is a compelling platform to achieve and combine topological superconductivity with existing and new qubit modalities. We
...
Coupled spins in semiconductor quantum dots are a versatile platform for quantum computing and simulations of complex many-body phenomena. However, on the path of scale-up, crosstalk from densely packed electrodes poses a severe challenge. While crosstalk onto the quantum dot pot
...
Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-
...
Gate-defined quantum dots define an attractive platform for quantum computation and have been used to confine individual charges in a planar array. Here, we demonstrate control over vertical double quantum dots confined in a strained germanium double quantum well. We sense indivi
...
Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits
...
Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a
...
The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions betw
...
Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric
...
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are co
...
Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubb
...
The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line—an
...
Semiconductor spin qubits have gained increasing attention as a possible platform to host a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been shown in a wide variety of semiconductor materials. The highest performance for spin qubit logic has be
...
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation. Thus far, developments have been limited to quantum dots defined in a single plane. Here, we propose to advance beyond planar systems by explo
...