MV
M. Veldhorst
info
Please Note
<p>This page displays the records of the person named above and is not linked to a unique person identifier. This record may need to be merged to a profile.</p>
83 records found
1
Disorder in the heterogeneous material stack of semiconductor spin qubit systems introduces noise that compromises quantum information processing, posing a challenge to coherently control large-scale quantum devices. Here we exploit low-disorder epitaxial, strained quantum wells
...
Coupled spins in semiconductor quantum dots are a versatile platform for quantum computing and simulations of complex many-body phenomena. However, on the path of scale-up, crosstalk from densely packed electrodes poses a severe challenge. While crosstalk onto the quantum dot pot
...
Coupled spins in semiconductor quantum dots are a versatile platform for quantum computing and simulations of complex many-body phenomena. However, on the path of scale-up, crosstalk from densely packed electrodes poses a severe challenge. While crosstalk onto the quantum dot pot
...
Semiconductor spin qubits have emerged as a promising platform for quantum computing, following a significant improvement in their control fidelities over recent years. Increasing the qubit count remains challenging, beginning with the fabrication of small features and complex fa
...
As one of the few group IV materials with the potential to host superconductor–semiconductor hybrid devices, planar germanium hosting proximitized quantum dots is a compelling platform to achieve and combine topological superconductivity with existing and new qubit modalities. We
...
Semiconductor spin qubits have emerged as a promising platform for quantum computing, following a significant improvement in their control fidelities over recent years. Increasing the qubit count remains challenging, beginning with the fabrication of small features and complex fa
...
Disorder in the heterogeneous material stack of semiconductor spin qubit systems introduces noise that compromises quantum information processing, posing a challenge to coherently control large-scale quantum devices. Here we exploit low-disorder epitaxial, strained quantum wells
...
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that defi
...
Micromagnet-enabled electric-dipole spin resonance (EDSR) is an established method for high-fidelity single-spin control in silicon, although so far experiments have been restricted to one-dimensional arrays. In contrast, qubit control based on hopping spins has recently emerged
...
Micromagnet-enabled electric-dipole spin resonance (EDSR) is an established method for high-fidelity single-spin control in silicon, although so far experiments have been restricted to one-dimensional arrays. In contrast, qubit control based on hopping spins has recently emerged
...
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryo
...
Spin qubits in germanium gate-defined quantum dots have made considerable progress within the last few years, partially due to their strong spin-orbit coupling and site-dependent g-tensors. While this characteristic of the g-factors removes the need for micromagnets and allows fo
...
Spin qubits in germanium gate-defined quantum dots have made considerable progress within the last few years, partially due to their strong spin-orbit coupling and site-dependent g-tensors. While this characteristic of the g-factors removes the need for micromagnets and allows fo
...
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that defi
...
Quantum computers require the systematic operation of qubits with high fidelity. For holes in germanium, the spin-orbit interaction allows for electric, fast and high-fidelity qubit gates. However, the strong g-tensor anisotropy of holes in germanium and their sensitivity to the
...
Quantum computers require the systematic operation of qubits with high fidelity. For holes in germanium, the spin-orbit interaction allows for electric, fast and high-fidelity qubit gates. However, the strong g-tensor anisotropy of holes in germanium and their sensitivity to the
...
As one of the few group IV materials with the potential to host superconductor–semiconductor hybrid devices, planar germanium hosting proximitized quantum dots is a compelling platform to achieve and combine topological superconductivity with existing and new qubit modalities. We
...
The rapidly growing number of qubits in semiconductor quantum computers requires a scalable control interface, including the efficient generation of dc bias voltages for gate electrodes. To avoid unrealistically complex wiring between any room-temperature electronics and the cryo
...
Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-
...
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are co
...