SB
S. Bosco
8 records found
1
Two-level systems (TLSs) are the basic units of quantum computers but face a trade-off between operation speed and coherence due to shared coupling paths. Here, we investigate a TLS given by a singlet-triplet (ST+) transition. We identify a magnetic-field configuration that maxim
...
Hole spin qubits are emerging as the workhorse of semiconducting quantum processors because of their large spin-orbit interaction, enabling fast, low-power, all-electric operations. However, this interaction also causes non-uniformities, resulting in site-dependent qubit energies
...
Direct multiqubit gates are becoming critical to facilitate quantum computations in near-term devices by reducing the gate counts and circuit depth. Here, we demonstrate that fast and high-fidelity three-qubit gates can be realized in a single step by leveraging small anisotropic
...
Non-reciprocal devices are key components in both classical and quantum electronics. One approach to realizing passive non-reciprocal microwave devices is through capacitive coupling between external electrodes and materials exhibiting non-reciprocal conductance. In this work, we
...
Efficient adiabatic control schemes, where one steers a quantum system along an adiabatic path ensuring minimal excitations while achieving a desired final state, that enable fast, high-fidelity operations are essential for any practical quantum computation. However, current opti
...
Electron spins confined in silicon quantum dots are promising candidates for large-scale quantum computers. However, the degeneracy of the conduction band of bulk silicon introduces additional levels dangerously close to the window of computational energies, where the quantum inf
...
Shuttling spins with high fidelity is a key requirement to scale up semiconducting quantum computers, enabling qubit entanglement over large distances and favoring the integration of control electronics on-chip. To decouple the spin from the unavoidable charge noise, state-of-the
...
Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures have emerged as front-runners for future hole-based quantum processors. Here, we present strong coupling between a hole charge qubit, defined in a double quantum dot (DQD) in planar Ge, and microwave photo
...