BU

B.W. Undseth

9 records found

Micromagnet-enabled electric-dipole spin resonance (EDSR) is an established method for high-fidelity single-spin control in silicon, although so far experiments have been restricted to one-dimensional arrays. In contrast, qubit control based on hopping spins has recently emerged ...
The design and benchmarking of quantum computer architectures traditionally rely on practical hardware restrictions, such as gate fidelities, control, and cooling. At the theoretical and software levels, numerous approaches have been proposed for benchmarking quantum devices, ran ...
Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders ...
Micromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense array ...

Hotter is Easier

Unexpected Temperature Dependence of Spin Qubit Frequencies

As spin-based quantum processors grow in size and complexity, maintaining high fidelities and minimizing crosstalk will be essential for the successful implementation of quantum algorithms and error-correction protocols. In particular, recent experiments have highlighted pernicio ...
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error th ...