JF

J. Fischer

11 records found

The goal of future quantum networks is to enable new internet applications that are impossible to achieve using only classical communication1, 2–3. Up to now, demonstrations of quantum network applications4, 5–6 and functionalities7, 8, 9, 10, 11–12 on quantum processors have bee ...
We demonstrate coherent coupling of a single diamond Tin-Vacancy center to a fiber-based microcavity, showing a cavity transmission dip of 50 % on resonance, and altered photon statistics in cavity transmission.
Efficient coupling of optically active qubits to optical cavities is a key challenge for solid-state-based quantum optics experiments and future quantum technologies. Here we present a quantum photonic interface based on a single tin-vacancy center in a micrometer-thin diamond me ...
We show diamond Tin-Vacancy centers, coherently-coupled to a tunable microcavity. The exceptional optical properties of this emitter in combination with a stable, high quality cavity enables a cavity transmission signal modulated by a single emitter.
Open microcavities offer great potential for the exploration and utilization of efficient spin-photon interfaces with Purcell-enhanced quantum emitters thanks to their large spectral and spatial tunability combined with high versatility of sample integration. However, a major cha ...
We report on the realization of a fiber-based microcavity, exhibiting low cavity length fluctuations in combination with full spatial and spectral tunability. The microcavity is used to demonstrate Purcell-enhancement of diamond Tin-Vacancy centers.