Circular Image

M. Iuliano

14 records found

Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise ...
The ability to sense and control nuclear spins near solid-state defects might enable a range of quantum technologies. Dynamically decoupled radio-frequency (DDrf) control offers a high degree of design flexibility and long electron-spin coherence times. However, previous studies ...
The negatively charged tin-vacancy (SnV) center in diamond has emerged as a promising platform for quantum computing and quantum networks. To connect SnV qubits in large networks, in situ tuning and stabilization of their optical transitions are essential ...
We demonstrate large-range tuning of the optical transition of Tin-Vacancies (SnV) in diamond using electro-mechanical-induced strain, realizing >40 GHz tuning. We employ real-time feedback on the strain environment to stabilize the resonant frequency.
The goal of future quantum networks is to enable new internet applications that are impossible to achieve using only classical communication1, 2–3. Up to now, demonstrations of quantum network applications4, 5–6 and functionalities7, 8, 9, 10, 11–12 on quantum processors have bee ...
We report on a quantum interface linking a diamond NV center quantum network node and 795nm photonic time-bin qubits compatible with Thulium and Rubidium quantum memories. The interface makes use of two-stage low-noise quantum frequency conversion and waveform shaping to match te ...