TT
T.L. Turan
7 records found
1
Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise
...
The negatively charged tin-vacancy (SnV−) center in diamond has emerged as a promising platform for quantum computing and quantum networks. To connect SnV− qubits in large networks, in situ tuning and stabilization of their optical transitions are essential
...
We show coupling of an SnV center to a diamond waveguide of 20% with almost transform-limited optical transitions. Besides, we show control over the SnV spin qubit and extend its coherence to over a millisecond.
We present our optimized diamond fabrication process based on quasi-isotropic crystal-plane-dependent reactive-ion-etching at low and high temperature plasma regime. We demonstrate successful integration of SnV centers in diamond waveguides showing quantum non-linear effects. We
...
Diamond tin-vacancy centers have emerged as a promising platform for quantum information science and technology. A key challenge for their use in more-complex quantum experiments and scalable applications is the ability to prepare the center in the desired charge state with the o
...
We demonstrate heralded initialization of charge state and optical transition frequency of diamond tin-vacancy centers, using (off-)resonant lasers, photon detection and real-time logic. Using this, we show frequency tunability > 100 MHz and strongly improved optical coherence
...
Color centers integrated with nanophotonic devices have emerged as a compelling platform for quantum science and technology. Here, we integrate tin-vacancy centers in a diamond waveguide and investigate the interaction with light at the single-photon level in both reflection and
...