Memristive oscillatory circuits for resolution of NP-complete logic puzzles

Sudoku case

More Info
expand_more

Abstract

Memristor networks are capable of low-power and massive parallel processing and information storage. Moreover, they have presented the ability to apply for a vast number of intelligent data analysis applications targeting mobile edge devices and low power computing. Beyond the memory and conventional computing architectures, memristors are widely studied in circuits aiming for increased intelligence that are suitable to tackle complex problems in a power and area efficient manner, offering viable solutions oftenly arriving also from the biological principles of living organisms. In this paper, a memristive circuit exploiting the dynamics of oscillating networks is utilized for the resolution of very popular and NP-complete logic puzzles, like the well-known “Sudoku”. More specifically, the proposed circuit design methodology allows for appropriate usage of interconnections' advantages in a oscillation network and of memristor's switching dynamics resulting to logic-solvable puzzle-instances. The reduced complexity of the proposed circuit and its increased scalability constitute its main advantage against previous approaches and the broadly presented SPICE based simulations provide a clear proof of concept of the aforementioned appealing characteristics.