Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Composites

Journal Article (2019)
Authors

M.N. Saleh (Structural Integrity & Composites)

Hassan M. El-Dessouky

M Saeedifar (Structural Integrity & Composites)

S. Teixeira Freitas (Structural Integrity & Composites)

Richard J. Scaife

Dimitrios Zarouchas (Structural Integrity & Composites)

Research Group
Structural Integrity & Composites
Copyright
© 2019 M. Saleh, Hassan M. El-Dessouky, M. Saeedifar, S. Teixeira De Freitas, Richard J. Scaife, D. Zarouchas
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 M. Saleh, Hassan M. El-Dessouky, M. Saeedifar, S. Teixeira De Freitas, Richard J. Scaife, D. Zarouchas
Research Group
Structural Integrity & Composites
Volume number
125
Pages (from-to)
105576
DOI:
https://doi.org/10.1016/j.compositesa.2019.105576
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper investigates the effect of the fabric architecture and the z-binding yarns on the compression after multiple impacts behavior of composites. Four fiber architectures are investigated: non-crimp fabric (NCF), 2D plain weave (2D-PW), 3D orthogonal plain (ORT-PW) and twill (ORT-TW) weave. The specimens were subjected to single and multiple low-velocity impacts at different locations with the same energy level (15 J). Non-destructive techniques including ultrasonic C-scanning, X-ray CT and Digital Image Correlation (DIC) are employed to quantitatively analyze and capture the Barely Visible Impact Damage (BVID) induced in the specimens. Although the absorbed energy was approximately the same, damage was the least in 3D woven architectures. In the case of compression after impact, 3D woven composites demonstrated a progressive damage behavior with the highest residual strength (∼92%) while 2D plain weave and NCF specimens showed suddenly catastrophic damage and the residual strength of ∼65% and ∼55% respectively.

Files

1_s2.0_S1359835X19303252_main.... (pdf)
(pdf | 4.42 Mb)
- Embargo expired in 01-05-2020
License info not available