Affinely parametrized state-space models
Ways to maximize the Likelihood Function
Adrian Wills (The University of Newcastle, Australia)
C. Yu (Beijing Institute of Technology)
Lennart Ljung (Linköping University)
MHG Verhaegen (TU Delft - Team Raf Van de Plas)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Using Maximum Likelihood (or Prediction Error) methods to identify linear state space model is a prime technique. The likelihood function is a nonconvex function and care must be exercised in the numerical maximization. Here the focus will be on affine parameterizations which allow some special techniques and algorithms. Three approaches to formulate and perform the maximization are described in this contribution: (1) The standard and well known Gauss-Newton iterative search, (2) a scheme based on the EM (expectation-maximization) technique, which becomes especially simple in the affine parameterization case, and (3) a new approach based on lifting the problem to a higher dimension in the parameter space and introducing rank constraints.