Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells

Journal Article (2014)
Author(s)

Saullo G.P. Pereira Castro (Brazilian Aerospace Company, Private University of Applied Sciences)

Rolf Zimmermann (Deutsches Zentrum für Luft- und Raumfahrt (DLR))

Mariano A. Arbelo (Private University of Applied Sciences)

Regina Khakimova (Deutsches Zentrum für Luft- und Raumfahrt (DLR))

Mark W. Hilburger (NASA Langley Research Center)

Richard Degenhardt (Deutsches Zentrum für Luft- und Raumfahrt (DLR))

Research Group
Aerospace Structures & Computational Mechanics
DOI related publication
https://doi.org/10.1016/j.tws.2013.08.011
More Info
expand_more
Publication Year
2014
Language
English
Research Group
Aerospace Structures & Computational Mechanics
Volume number
74
Pages (from-to)
118-132

Abstract

The important role of geometric imperfections on the decrease of the buckling load for thin-walled cylinders had been recognized already by the first authors investigating the theoretical approaches on this topic. However, there are currently no closed-form solutions to take imperfections into account already during the early design phases, forcing the analysts to use lower-bound methods to calculate the required knock-down factors (KDF). Lower-bound methods such as the empirical NASA SP-8007 guideline are commonly used in the aerospace and space industries, while the approaches based on the Reduced Stiffness Method (RSM) have been used mostly in the civil engineering field. Since 1970s a considerable number of experimental and numerical investigations have been conducted to develop new stochastic and deterministic methods for calculating less conservative KDFs. Among the deterministic approaches, the single perturbation load approach (SPLA), proposed by Hühne, will be further investigated for axially compressed fiber composite cylindrical shells and compared with four other methods commonly used to create geometric imperfections: linear buckling mode-shaped, geometric dimples, axisymmetric imperfections and measured geometric imperfections from test articles. The finite element method using static analysis with artificial damping is used to simulate the displacement controlled compression tests up to the post-buckled range of loading. The implementation of each method is explained in details and the different KDFs obtained are compared. The study is part of the European Union (EU) project DESICOS, whose aim is to combine stochastic and deterministic approaches to develop less conservative guidelines for the design of imperfection sensitive structures.

No files available

Metadata only record. There are no files for this record.