Fusion of Radar Data Domains for Human Activity Recognition in Assisted Living
Julien Le Kernec (University of Glasgow)
Francesco Fioranelli (TU Delft - Microwave Sensing, Signals & Systems, TU Delft - Microelectronics)
Olivier Romain (Observatoire de Paris)
Alexandre Bordat (Observatoire de Paris)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Radar has long been considered an important technology for indoor monitoring and assisted living. As ageing has become a worldwide problem, it causes a huge burden on the government’s healthcare expenses and infrastructure. Radar-based human activity recognition (HAR) is foreseen to become a widespread sensing modality for health monitoring at home. Conventional radar-based HAR task usually adopts the amplitude of spectrograms as input to a convolutional neural network (CNN), which can limit the achieved performances. A hybrid fusion model is here proposed, which can integrate multiple radar data domains. The result shows that the proposed framework can achieve superior classification accuracy of 92.1% (+2.5% higher than conventional CNN) and a lighter computational load than the state-of-the-art techniques with 3D-CNN.