JL

Julien Le Kernec

27 records found

Radar systems are increasingly being employed in healthcare applications for human activity recognition due to their advantages in terms of privacy, contactless sensing, and insensitivity to lighting conditions. The proposed classification algorithms are however often complex, fo ...
Radar has long been considered an important technology for indoor monitoring and assisted living. As ageing has become a worldwide problem, it causes a huge burden on the government’s healthcare expenses and infrastructure. Radar-based human activity recognition (HAR) is foreseen ...
Population ageing has become a severe problem worldwide. Human activity recognition (HAR) can play an important role to provide the elders with in-time healthcare. With the advantages of environmental insensitivity, contactless sensing and privacy protection, radar has been widel ...
Radar is now widely used in human activity classification because of its contactless sensing capabilities, robustness to light conditions and privacy preservation compared to plain optical images. It has great value in elderly care, monitoring accidental falls and abnormal behavi ...
Radar systems are increasingly being used for healthcare applications for human activity recognition due to their advantages for privacy compliance, contactless sensing, and insensitivity to lighting conditions. The proposed classification algorithms are often very complex, hence ...
This chapter presents a summary of radar-based classification approaches developed for small drones carrying payloads. Specific focus is given to three types oftechniques that were validated on the same multistatic radar data set collected usingthe University College London (UCL) ...
In this paper, radar sensing in the domain of human healthcare is discussed, specifically looking at the typical applications of human activity classification (including fall detection), gait analysis and gait parameters extraction, and vital signs monitoring such as respiration ...
The latest progress of the multiple-input multiple-output (MIMO) radar system developed for small drones detection at Beijing Institute of Technology is presented herein. A low-cost S-band MIMO scanning radar system is designed for the detection of small drones. A practical desig ...
Human Activity Classification with radar has made significant progress in the past few years. In this article, we propose a cyclostationarity-based approach in this field of application. Feature extraction, selection, and activity classification as it detects micro-Doppler is mad ...
In personnel recognition based on radar, significant research exists on statistical features extracted from the micro-Doppler signatures, whereas research considering other domains and information such as phase is less developed. This paper presents the use of deep learning metho ...
Radar micro-Doppler signatures have been proposed for human monitoring and activity classification for surveillance and outdoor security, as well as for ambient assisted living in healthcare-related applications. A known issue is the performance reduction when the target is movin ...
Radar-based classification of human activities and gait have attracted significant attention with a large number of approaches proposed in terms of features and classification algorithms. A common approach in activity classification attempts to find the algorithm (features plus c ...
Radar-based human activities recognition is still an open problem and is a key to detect anomalous behaviour for security and health applications. Deep learning networks such as convolutional neural networks (CNN) have been proposed for such tasks and showed better performance th ...
Recognition of human movements with radar for ambient activity monitoring is a developed area of research that yet presents outstanding challenges to address. In real environments, activities and movements are performed with seamless motion, with continuous transitions between ac ...
In human activity recognition (HAR) based on radar, significant research exists on statistical features extracted from the spectrogram (μD), whereas the research which considers other domains is less developed. This paper is aimed to investigate three domains of radar data: μD, C ...
This paper discusses a fusion framework with data from multiple, distributed radar sensors based on conventional classifiers, and transfer learning with pre-trained deep networks. The application considered is the classification of gait styles and the detection of critical accide ...
Radar micro-Doppler signatures have been proposed for human activity classification for surveillance and ambient assisted living in healthcare-related applications. A known issue is the performance reduction when the target is moving tangentially to the line-of-sight of the radar ...

Elderly Care

Using Deep Learning for Multi-Domain Activity Classification

Nowadays, health monitoring issues are increasing as the worldwide population is aging. In this paper, the radar modality is used to classify with radar signature automatically. The classic approach is to extract features from micro-Doppler signatures for classification. This dat ...