Retraction Note

Quantized Majorana conductance (Nature, (2018), 556, 7699, (74-79), 10.1038/nature26142)

Journal Article (2021)
Authors

Hao Zhang (TU Delft - QRD/Kouwenhoven Lab)

Chun Xiao Liu (University of Maryland)

S. Gazibegovic (TU Delft - QRD/Kouwenhoven Lab, Eindhoven University of Technology)

Di Xu (Kavli institute of nanoscience Delft, TU Delft - QRD/Kouwenhoven Lab)

Guanzhong Wang (Kavli institute of nanoscience Delft, TU Delft - QRD/Kouwenhoven Lab)

Nick Van Loo (TU Delft - QRD/Kouwenhoven Lab)

Jouri D.S. Bommer (TU Delft - QRD/Kouwenhoven Lab, Kavli institute of nanoscience Delft)

M.W.A. de Moor (Kavli institute of nanoscience Delft, TU Delft - QRD/Kouwenhoven Lab)

Diana Car (Eindhoven University of Technology, TU Delft - QRD/Kouwenhoven Lab)

Roy L.M. Op het Veld (Eindhoven University of Technology, TU Delft - QRD/Kouwenhoven Lab)

Sebastian Kölling (TU Delft - QRD/Kouwenhoven Lab, Eindhoven University of Technology)

Marcel A. Verheijen (Philips Research, Eindhoven University of Technology, TU Delft - Integral Design & Management)

Joon Sue Lee (University of California)

EPAM Bakkers (Eindhoven University of Technology, QN/Bakkers Lab)

LP Kouwenhoven (Kavli institute of nanoscience Delft, Microsoft Quantum Lab Delft, TU Delft - QN/Kouwenhoven Lab)

Research Group
QRD/Kouwenhoven Lab
To reference this document use:
https://doi.org/10.1038/s41586-021-03373-x
More Info
expand_more
Publication Year
2021
Language
English
Related content
Research Group
QRD/Kouwenhoven Lab
Issue number
7851
Volume number
591
Pages (from-to)
E30
DOI:
https://doi.org/10.1038/s41586-021-03373-x

Abstract

In this Letter, we reported electrical measurements and numerical simulations of hybrid superconducting–semiconducting nanowires in a magnetic field. We reported plateaus in the conductance at 2e2/h, which we interpreted as evidence for the presence of Majorana zero-modes. However, several inconsistencies were pointed out by Sergey Frolov and Vincent Mourik between the raw measurement data that was made available to them and the figures that were published in the paper. We therefore re-analysed all the existing raw data for our original measurements and rebuilt the original experimental set-up for a re-calibration of the conductance values. We established that the data in two of the figures (Fig. 2a and Extended Data Fig. 4b) had been unnecessarily corrected for charge jumps (corrections that were not mentioned explicitly in the paper), and that one of the figure axes was mislabelled (Fig. 4b). The new conductance calibration shifted the plateau values by 8 per cent, above 2e2/h, which affects all the figures1. When the data are replotted over the full parameter range, including ranges that were not made available earlier, points are outside the 2-sigma error bars. We can therefore no longer claim the observation of a quantized Majorana conductance, and wish to retract this Letter. After informing Nature of this decision, Nature issued an Editorial Expression of Concern2 and initiated the retraction process. In ref. 1 we provide all the raw data underlying the published figures as well as the unpublished datasets. Ref. 1 also contains the analysis methods and a side-by-side comparison between the original and the corrected figures. In ref. 3 we provide a new manuscript with corrected and extended datasets, discussed in the context of new insights on zero-energy states in systems with inhomogeneous potentials and disorder. We thank Piet Brouwer, Klaus Ensslin, David Goldhaber-Gordon and Patrick Lee for the expert evaluation report available via ref. 1. We also thank Michael Wimmer and Bernard van Heck for their help with the analyses. We apologize to the community for insufficient scientific rigour in our original manuscript.

No files available

Metadata only record. There are no files for this record.