In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation

Journal Article (2019)
Author(s)

Nick Brouwers (TU Delft - BT/Industriele Microbiologie, TU Delft - OLD BT/Cell Systems Engineering)

A.R. Gorter de Vries (TU Delft - OLD BT/Cell Systems Engineering, TU Delft - BT/Industriele Microbiologie)

MA Van Den Broek (TU Delft - BT/Industriele Microbiologie, TU Delft - OLD BT/Cell Systems Engineering)

Susan M. Weening (TU Delft - BT/Industriele Microbiologie, TU Delft - OLD BT/Cell Systems Engineering)

Tom D. Elink Schuurman (Heineken Supply Chain)

Niels G.A. Kuijpers (Heineken Supply Chain)

JT Pronk (TU Delft - OLD BT/Cell Systems Engineering, TU Delft - BT/Industriele Microbiologie)

Jean Marc Daran (TU Delft - OLD BT/Cell Systems Engineering, TU Delft - BT/Industriele Microbiologie)

Research Group
BT/Industriele Microbiologie
Copyright
© 2019 N. Brouwers, A.R. Gorter de Vries, M.A. van den Broek, S.M. Weening, Tom D. Elink Schuurman, Niels G.A. Kuijpers, J.T. Pronk, J.G. Daran
DOI related publication
https://doi.org/10.1371/journal.pgen.1007853
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 N. Brouwers, A.R. Gorter de Vries, M.A. van den Broek, S.M. Weening, Tom D. Elink Schuurman, Niels G.A. Kuijpers, J.T. Pronk, J.G. Daran
Research Group
BT/Industriele Microbiologie
Issue number
4
Volume number
15
Pages (from-to)
e1007853
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer's wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study.