Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models

Journal Article (2003)
Contributor(s)

Copyright
© Institute of Mathematical Statistics
DOI related publication
https://doi.org/doi:10.1214/aop/1046294314
More Info
expand_more
Publication Year
2003
Copyright
© Institute of Mathematical Statistics
Related content
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on ${\mathbb{Z}^d}$, having long finite-range connections, above their upper critical dimensions $d=4$ (self-avoiding walk), $d=6$ (percolation) and $d=8$ (trees and animals). The two-point functions for these models are respectively the generating function for self-avoiding walks from the origin to $x \in {\mathbb{Z}^d}$, the probability of a connection from 0 to x, and the generating function for lattice trees or lattice animals containing 0 and x. We use the lace expansion to prove that for sufficiently spread-out models above the upper critical dimension, the two-point function of each model decays, at the critical point, as a multiple of $|x|^{2-d}$ as $x \to \infty$. We use a new unified method to prove convergence of the lace expansion. The method is based on x-space methods rather than the Fourier transform. Our results also yield unified and simplified proofs of the bubble condition for self-avoiding walk, the triangle condition for percolation, and the square condition for lattice trees and lattice animals, for sufficiently spread-out models above the upper critical dimension.

Files

Hofstad.pdf
(pdf | 0.505 Mb)
License info not available