The Set-Invariance Paradigm in Fuzzy Adaptive DSC Design of Large-Scale Nonlinear Input-Constrained Systems
Maolong Lyu (TU Delft - Team Bart De Schutter)
Wenwu Yu (Southeast University)
S Baldi (Southeast University, TU Delft - Team Bart De Schutter)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper proposes a novel set-invariance adaptive dynamic surface control (DSC) design for a larger class of uncertain large-scale nonlinear input-saturated systems. The peculiarity of this class is that no a priori bound on the continuous control gain functions is assumed (i.e., their boundedness cannot be assumed before obtaining system stability). This requires a new design. Differently from the available methods, the proposed design involves the construction of appropriate invariant sets for the closed-loop trajectories, which allows to remove the restrictive assumption of a priori bounds of the control gain functions. Furthermore, we show that such set-invariance design can handle input constraints in the form of input saturation. In line with the DSC methodology, semi-globally uniformly ultimate boundedness is proven: however, differently from the standard methodology, stability analysis requires the combination of Lyapunov and invariant set theories.