Classical large deviation theorems on complete Riemannian manifolds
Richard C. Kraaij (Ruhr-Universität Bochum)
Frank Redig (TU Delft - Applied Probability)
R. Versendaal (TU Delft - Applied Probability)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We generalize classical large deviation theorems to the setting of complete, smooth Riemannian manifolds. We prove the analogue of Mogulskii's theorem for geodesic random walks via a general approach using viscosity solutions for Hamilton–Jacobi equations. As a corollary, we also obtain the analogue of Cramér's theorem. The approach also provides a new proof of Schilder's theorem. Additionally, we provide a proof of Schilder's theorem by using an embedding into Euclidean space, together with Freidlin–Wentzell theory.