A two-dimensional modal method for spatial rehomogenization of nodal cross sections and discontinuity-factor correction
Matteo Gamarino (TU Delft - RST/Reactor Physics and Nuclear Materials)
Aldo Dall'Osso (AREVA)
D. Lathouwers (TU Delft - RST/Reactor Physics and Nuclear Materials)
Jan Leen Kloosterman (TU Delft - RST/Radiation, Science and Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We propose a two-dimensional (2-D) modal approach for spatial rehomogenization of nodal cross sections in light water reactor analysis. This algorithm aims to synthesize the variation in the 2-D intranodal distributions of the few-group flux and directional net currents between the core environment and the infinite-lattice approximation. Assembly discontinuity factors are also corrected. The method is validated on a broad set of pressurized-water-reactor benchmark problems. Its accuracy is assessed on both nodal quantities and the reconstructed pin-by-pin flux and power distributions. We show that the errors in the effective multiplication factor and assembly-averaged fission power significantly decrease compared to the calculation with infinite-medium homogenization parameters. In most cases, an improvement is also found at the pin level. A thorough discussion follows, which addresses the use of the 2-D neutron current information to compute the transverse-leakage distribution for the transverse-integrated nodal equations, the potential dual application of the method for rehomogenization and dehomogenization, and the quantification of the contributions of various environmental effects (spatial, spectral, and cross energy-space) to homogenization errors.