Durability of an UHPFRC under mechanical and chloride loads
Ana Matos (Universidade do Porto)
Stefan C. Figueiredo (TU Delft - Materials and Environment, Eindhoven University of Technology)
Sandra Nunes (Universidade do Porto)
E. Schlangen (TU Delft - Materials and Environment)
José L.Barroso Barroso-Aguiar (University of Minho)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The high cost of UHPFRC is a limitation on the practical application in real construction projects. However, a very competitive UHPFRC approach is the hybrid structural elements, where thin layers of UHPFRC are employed to rehabilitate/strengthen damage cover concrete. New layers subjected to harsh conditions (loads and/or environmental) can eventually crack under service conditions, changing the local transport properties and thus, a faster ingress of detrimental substances occur, such as chlorides ions. Most of the studies on chloride penetration in UHPFRC have focused on determining the transport properties of sound, non-cracked specimens. Thus, an experimental campaign was carried out to assess chloride ingress in loaded and/or cracked UHPFRC and the effect of such ions on mechanical performance. Typical service cracks patterns were imposed on UHPFRC specimens and then exposed to wetting–drying cycles in a chloride solution. After 1-year chloride exposure, UHPFRC specimens were in good condition with no significant losses in flexural strength; however, stiffness might be affected. The chloride contents up to 20 mm depth were superior to the European standards critical chloride content. A minimum cover depth of 20 mm of new UHPFRC is recommended to protect a concrete substrate in hybrid structures for exposure classes XS3.