Exploring Regional Agglomeration Dynamics in Face of Climate-Driven Hazards
Insights from an Agent-Based Computational Economic Model
Alessandro Taberna (TU Delft - Policy Analysis)
Tatiana Filatova (TU Delft - Policy Analysis)
Andrea Roventini (Scuola Superiore Sant’Anna)
Francesco Lamperti (Scuola Superiore Sant’Anna)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
By 2050 about 80% of the world’s population is expected to live in cities. Cities offer spatial economic advantages that create agglomeration forces and innovation that foster concentration of economic activities, but for historic reasons cluster along coasts and rivers that are prone to climate-driven flooding. To explore tradeoffs between agglomeration economies and the changing face of hazards we present an evolutionary economics model with heterogeneous agents. Without climate-induced shocks, the model demonstrates how advantageous transport costs that the waterfront offers lead to the self-reinforcing and path-dependent agglomeration process in coastal areas. The likelihood and speed of such agglomeration strongly depend on the transport cost and magnitude of climate-driven shocks. In particular, shocks of different size have non-linear impact on output growth and spatial distribution of economic activities.