Aeroelastic design and LPV modelling of an experimental wind turbine blade equipped with free-floating flaps

More Info
expand_more

Abstract

Trailing edge aps located outboard on wind turbine blades have recently shown considerable potential in the alleviation of turbine lifetime dynamic loads. The concept of the free-oating ap is speci_cally interesting for wind turbines, on account of its modularity and enhanced control authority. Such a ap is free to rotate about its axis; camberline control of the free-oating ap allows for aeroelastic control of blade loads. This paper describes the design of a scaled wind turbine blade instrumented with free-oating aps, intended for use in wind tunnel experiments. The nature of the ap introduces a coupled form of utter due to the aeroelastic coupling of ap rigid-body and blade out-of-plane modes; for maximal control authority it is desired to operate close to the utter limit. Analytical and numerical methods are used to perform a utter analysis of the turbine blade. It is shown that the potential ow aeroelastic model can be recast as a continuous-time Linear-Parameter-Varying (LPV) state space model of a low order, for which formal controller design methodologies are readily available.