Dynamic Graph Filters Networks
A Gray-box Model for Multistep Traffic Forecasting
Guopeng Li (Transport and Planning)
Victor Knoop (Transport and Planning)
J.W.C. van Lint (Transport and Planning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Short-term traffic forecasting is one of the key functions in Intelligent Transportation System (ITS). Recently, deep learning is drawing more attention in this field. However, how to develop a deep learning based traffic forecasting model that can dynamically extract explainable spatial correlations from traffic data is still a challenging issue. The difficulty mainly comes from the inconsistency between static model structures and the dynamic evolution of traffic conditions. To overcome this difficulty, we proposed a novel multistep speed forecasting model, Dynamic Graph Filters Networks (DGFN). The major contribution is that the regular pixel-wise dynamic convolution is extended to graph topology. DGFN has a simple recurrent cell structure where local area-wide graph convolutional kernels are dynamically computed from varying inputs. Experiments on ring freeways show that DGFN is able to precisely predict short-term evolution of traffic speed. Furthermore, we theoretically explain why DGFN is not a pure “black-box”, but a “gray-box” model that actually reduces entangled spatial and temporal features into one component representing dynamic spatial correlations. It permits tracking real-time interactions among adjacent links. DGFN has the potential to relate trained parameters in deep learning models with physical traffic variables.