Performance engineering and energy efficiency of building blocks for large, sparse eigenvalue computations on heterogeneous supercomputers

More Info
expand_more

Abstract

Numerous challenges have to be mastered as applications in scientific computing are being developed for post-petascale parallel systems. While ample parallelism is usually available in the numerical problems at hand, the efficient use of supercomputer resources requires not only good scalability but also a verifiably effective use of resources on the core, the processor, and the accelerator level. Furthermore, power dissipation and energy consumption are becoming further optimization targets besides time-to-solution. Performance Engineering (PE) is the pivotal strategy for developing effective parallel code on all levels of modern architectures. In this paper we report on the development and use of low-level parallel building blocks in the GHOST library (“General, Hybrid, and Optimized Sparse Toolkit”). We demonstrate the use of PE in optimizing a density of states computation using the Kernel Polynomial Method, and show that reduction of runtime and reduction of energy are literally the same goal in this case. We also give a brief overview of the capabilities of GHOST and the applications in which it is being used successfully.