Size and shape dependence of finite-volume Kirkwood-Buff integrals
More Info
expand_more
Abstract
Analytic relations are derived for finite-volume integrals over the pair correlation function of a fluid, the so-called Kirkwood-Buff integrals. Closed-form expressions are obtained for cubes and cuboids, the system shapes commonly employed in molecular simulations. When finite-volume Kirkwood-Buff integrals are expanded over an inverse system size, the leading term depends on shape only through the surface area-to-volume ratio. This conjecture is proved for arbitrary shapes and a general expression for the leading term is derived. From this, an extrapolation to the infinite-volume limit is proposed, which converges much faster with system size than previous approximations and thus significantly simplifies the numerical computations.
No files available
Metadata only record. There are no files for this record.