TV

T.J.H. Vlugt

345 records found

Accurate conductivity predictions of KOH(aq) are crucial for electrolysis applications. OH– is transferred in water by the Grotthuss transfer mechanism, thereby increasing its mobility compared to that of other ions. Classical and ab initio molecular dynamics struggle to capture ...
Experimental screening of Metal Organic Frameworks (MOFs) for separation applications can be costly and time-consuming. Computational methods can provide many benefits in this process, as expensive compounds and a wide range of operating conditions can be tested while crucial mec ...
Cyclopentyl methyl ether (CPME) is a promising green solvent due to its eco-friendly properties; it is produced by adding methanol (MeOH) to cyclopentene. Separation of the resulting product mixture containing CPME and MeOH is critical, and it requires vapor-liquid equilibrium (V ...
Computation of the excess entropy (Formula presented.) from the second-order density expansion of the entropy holds strictly for infinite systems in the limit of small densities. For the reliable and efficient computation of (Formula presented.) it is important to understand fini ...
Heat pumps, which recycle waste heat, are a promising technology for reducing CO2 emissions. Efficiently using low-grade waste heat remains challenging due to the limitations of standard heat exchangers and the need for more effective working fluids. This work introduc ...
Nitric oxide, NO, is a free radical that forms dimers, (NO)2, at its vapor–liquid coexisting temperatures. In this work, we developed an all-atom force field for NO and (NO)2. To assess the performance of this force field, we computed the vapor–liquid equilibrium (VLE) properties ...
One of the most promising energy carriers for transport applications are hydrogen-based energy carriers. NaBH4 is a hydrogen energy carrier and produces hydrogen bubbles when it is dissolved in water. The formation of hydrogen bubbles hinders experimental measurements ...

Molecular insight into hydrogen storage in clathrate hydrates

The effect of different promoters on the spontaneous nucleation of hydrogen hydrates studied via microsecond-scale molecular dynamics simulations

Hydrate-based H2 storage is based on the mechanism of trapping H2 in water-based structures that are environmentally friendly and cost-efficient. Understanding the effects of common promoters on hydrate-based H2 storage at the molecular level is crucial for designing efficient st ...
The series of metal–organic frameworks M-MOF-74 gained popularity in the field of capture and separation of CO2 due to the presence of numerous, highly reactive open-metal sites. The description of effective interactions between guest molecules and open-metal sites wit ...
We study important aspects of shape selectivity effects of zeolites for hydroisomerization of linear alkanes, which produces a myriad of isomers, particularly for long chain hydrocarbons. To investigate the conditions for achieving an optimal yield of branched hydrocarbons, it is ...
A microscopic insight into hybrid CH4 physisorption-hydrate formation in halloysite nanotubes (HNTs) is vital for understanding the solidification storage of natural gas in the HNTs and developing energy storage technology. Herein, large-scale microsecond classical mol ...
Molecular-based equations of state for describing the thermodynamics of chain molecules are often based on mean-field like arguments that reduce the problem of describing the interactions between chains to a simpler one involving only nonbonded monomers. While for dense liquids s ...
We explore the impact of force field parameters and reaction equilibrium on the scaling behavior towards the critical point in reactive binary systems, focusing on NO 2/N 2O 4. This system can be considere ...
Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K). Therefore, it is essential ...
Linear regression (LR) is used to predict thermochemical properties of alkanes at temperatures (0–1000) K to study chemical reaction equilibria inside zeolites. The thermochemical properties of C1 until C10 isomers reported by Scott are used as training data sets in the LR model ...
Continuous Fractional Component Monte Carlo (CFCMC) and molecular dynamics (MD) simulations are performed to calculate the solubilities and self-diffusion coefficients of four light n-alkanes (methane, ethane, propane, and n-butane) in aqueous NaCl solutions as well as the thermo ...
Vapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are p ...
H2-CO2 mixtures find wide-ranging applications, including their growing significance as synthetic fuels in the transportation industry, relevance in capture technologies for carbon capture and storage, occurrence in subsurface storage of hydrogen, and hydrog ...
Knowledge on the kinetics of gas hydrate dissociation in clay pores at static and dynamic fluid conditions is a fundamental scientific issue for improving gas production efficiency from hydrate deposits using thermal stimulation and depressurization respectively. Here, molecular ...
Knowledge of the microscopic behavior of CO2 hydrates in oceanic sediments is crucial to evaluate the efficiency and stability of hydrate-based CO2 sequestration in oceans. Here, systematic molecular dynamics simulations are executed to investigate the growt ...