OM

O. Moultos

85 records found

Molecular insight into hydrogen storage in clathrate hydrates

The effect of different promoters on the spontaneous nucleation of hydrogen hydrates studied via microsecond-scale molecular dynamics simulations

Hydrate-based H2 storage is based on the mechanism of trapping H2 in water-based structures that are environmentally friendly and cost-efficient. Understanding the effects of common promoters on hydrate-based H2 storage at the molecular level is crucial for designing efficient st ...
Accurate conductivity predictions of KOH(aq) are crucial for electrolysis applications. OH– is transferred in water by the Grotthuss transfer mechanism, thereby increasing its mobility compared to that of other ions. Classical and ab initio molecular dynamics struggle to capture ...
One of the most promising energy carriers for transport applications are hydrogen-based energy carriers. NaBH4 is a hydrogen energy carrier and produces hydrogen bubbles when it is dissolved in water. The formation of hydrogen bubbles hinders experimental measurements ...
A microscopic insight into hybrid CH4 physisorption-hydrate formation in halloysite nanotubes (HNTs) is vital for understanding the solidification storage of natural gas in the HNTs and developing energy storage technology. Herein, large-scale microsecond classical mol ...
Knowledge on the kinetics of gas hydrate dissociation in clay pores at static and dynamic fluid conditions is a fundamental scientific issue for improving gas production efficiency from hydrate deposits using thermal stimulation and depressurization respectively. Here, molecular ...
Hydrogen is a clean-burning fuel that can be converted to other forms. of energy without generating any greenhouse gases. Currently, hydrogen is stored either by compression to high pressure (>700 bar) or cryogenic cooling to liquid form (<23 K). Therefore, it is essential ...
Knowledge of the microscopic behavior of CO2 hydrates in oceanic sediments is crucial to evaluate the efficiency and stability of hydrate-based CO2 sequestration in oceans. Here, systematic molecular dynamics simulations are executed to investigate the growt ...
Both CH4 hydrate accumulation and hydrate-based CO2 sequestration involve hydrate formation in mixed clay sediments. The development of realistic clay models and a nanoscale understanding of hydrate formation in mixed clay sediments are crucial for energy re ...
We explore the impact of force field parameters and reaction equilibrium on the scaling behavior towards the critical point in reactive binary systems, focusing on NO 2/N 2O 4. This system can be considere ...
Thermodynamic factors for diffusion connect the Fick and Maxwell-Stefan diffusion coefficients used to quantify mass transfer. Activity coefficient models or equations of state can be fitted to experimental or simulation data, from which thermodynamic factors can be obtained by d ...
The use of reactive working fluids in thermodynamic cycles is currently being considered as an alternative to inert working fluids, because of the preliminarily attested higher energy-efficiency potential. The current needs to simulate their use in thermodynamic cycles, which may ...
Continuous Fractional Component Monte Carlo (CFCMC) and molecular dynamics (MD) simulations are performed to calculate the solubilities and self-diffusion coefficients of four light n-alkanes (methane, ethane, propane, and n-butane) in aqueous NaCl solutions as well as the thermo ...

Ultrasound enhanced diffusion in hydrogels

An experimental and non-equilibrium molecular dynamics study

Focused ultrasound has experimentally been found to enhance the diffusion of nanoparticles; our aim with this work is to study this effect closer using both experiments and non-equilibrium molecular dynamics. Measurements from single particle tracking of 40 nm polystyrene nanopar ...
H2-CO2 mixtures find wide-ranging applications, including their growing significance as synthetic fuels in the transportation industry, relevance in capture technologies for carbon capture and storage, occurrence in subsurface storage of hydrogen, and hydrog ...

Diffusivity of CO2 in H2O

A Review of Experimental Studies and Molecular Simulations in the Bulk and in Confinement

An in-depth review of the available experimental and molecular simulation studies of CO2 diffusion in H2O, which is a central property in important industrial and environmental processes, such as carbon capture and storage, enhanced oil recovery, and in the ...
Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to d ...
Vapor-Liquid Equilibria (VLE) of hydrogen (H2) and aqueous electrolyte (KOH and NaCl) solutions are central to numerous industrial applications such as alkaline electrolysis and underground hydrogen storage. Continuous fractional component Monte Carlo simulations are p ...

Chemical Feedback in Templated Reaction-Assembly of Polyelectrolyte Complex Micelles

A Molecular Simulation Study of the Kinetics and Clustering

The chemical feedback between building blocks in templated polymerization of diblock copolymers and their consecutive micellization was studied for the first time by means of coarse-grained molecular dynamics simulations. Using a stochastic polymerization model, we were able to r ...
Sodium borohydride (NaBH4) has a high hydrogen (H2 ) gravimetric capacity of 10.7 wt %. NaBH4 releases H2 through a hydrolysis reaction in which aqueous NaB(OH)4 is formed as a byproduct. NaB(OH)4 strongly influenc ...

Carbonation in Low-Temperature CO2 Electrolyzers

Causes, Consequences, and Solutions

Electrochemical reduction of carbon dioxide (CO2) to useful products is an emerging power-to-X concept, which aims to produce chemicals and fuels with renewable electricity instead of fossil fuels. Depending on the catalyst, a range of chemicals can be produced from CO ...