M. Ramdin
52 records found
1
Cyclopentyl methyl ether (CPME) is a promising green solvent due to its eco-friendly properties; it is produced by adding methanol (MeOH) to cyclopentene. Separation of the resulting product mixture containing CPME and MeOH is critical, and it requires vapor-liquid equilibrium (V
...
Methane pyrolysis is a promising route for low-emission hydrogen (H2) production, with solid carbon as a potentially valuable byproduct. Despite this potential, the economic feasibility of Catalytic Methane Pyrolysis (CMP) with fluidized bed reactors (FBR) has been ins
...
The development of advanced catalysts with innovative nanoarchitectures is critical for addressing energy and environmental challenges such as the electrochemical CO2 reduction reaction (CO2 RR). Herein, the synthesis of an innovative copper–sulfur planar st
...
Computation of the excess entropy (Formula presented.) from the second-order density expansion of the entropy holds strictly for infinite systems in the limit of small densities. For the reliable and efficient computation of (Formula presented.) it is important to understand fini
...
Titanium dioxide (TiO2) has been widely used as a photocatalyst in CO2 reduction reaction (CO2RR) due to its low cost, high stability, and strong absorption in the close-to-visible ultra-violet (UV) range. However, TiO2 films suffer fro
...
Electrochemical CO2 reduction (CO2R) to chemicals and fuels has made tremendous progress since the introduction of gas diffusion electrodes (GDEs) to overcome mass-transfer limitations and enable industrial-scale current densities. The advancement in the fie
...
This extensive review highlights the central role of classical molecular simulation in advancing hydrogen (H2) technologies. As the transition to a sustainable energy landscape is urgently needed, the optimization of H2 processes, spanning production, purification, transportation
...
Electrochemical ammonia synthesis via the nitrogen reduction reaction (NRR) has been poised as one of the promising technologies for the sustainable production of green ammonia. In this work, we developed extensive process models of fully integrated electrochemical NH
...
Thermophysical Properties and Phase Behavior of CO2 with Impurities
Insight from Molecular Simulations
Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich
...
Viability assessment of large-scale Claude cycle hydrogen liquefaction
A study on technical and economic perspective
The competitiveness of hydrogen as a sustainable energy carrier depends greatly on its transportation and storage costs. Liquefying hydrogen offers advantages such as enhanced purity, versatility, and higher density, yet current industrial liquefaction processes face efficiency a
...
Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5–8-fold) and also provide possibilities
...
Vapor-liquid equilibrium (VLE) data for the binary systems tetrahydrofuran (THF) + acetic acid (AA) and THF + trichloroethylene (TCE) were measured under isobaric conditions using an ebulliometer. The boiling temperatures for the systems (THF + AA/THF + TCE) are reported for 13/1
...
Carbonation in Low-Temperature CO2 Electrolyzers
Causes, Consequences, and Solutions
Electrochemical reduction of carbon dioxide (CO2) to useful products is an emerging power-to-X concept, which aims to produce chemicals and fuels with renewable electricity instead of fossil fuels. Depending on the catalyst, a range of chemicals can be produced from CO
...
The removal of acid gas impurities from synthesis gas or natural gas can be achieved using several physical solvents. Examples of solvents applied on a commercial scale include methanol (Rectisol), poly(ethylene glycol) dimethyl ethers (Selexol), n-methyl-2-pyrrolidone (Purisol),
...
Due to the intermittency of renewable energy sources, alkaline water electrolyzers are typically operated at partial load compared to the nominal design value. It is well-known that gas crossover is dominant at low current densities leading to higher anodic hydrogen content and h
...
Recently, deep eutectic solvents (DES) have been considered as possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids. The applicability of pure DES as electrolytes is hindered by high viscosities. Mixtures of DES wi
...
The electrochemical CO2 reduction reaction (CO2RR) is important for a sustainable future. Key insights into the reaction pathways have been obtained by density functional theory (DFT) analysis, but so far, DFT has been unable to give an overall understanding of selectivity trends
...
Solubility of CO2in Aqueous Formic Acid Solutions and the Effect of NaCl Addition
A Molecular Simulation Study
There is a growing interest in the development of routes to produce formic acid from CO2, such as the electrochemical reduction of CO2 to formic acid. The solubility of CO2 in the electrolyte influences the production rate of formic acid. Here, the dependence of the CO2 solubilit
...
One of the important parameters in water management of proton exchange membranes is the electro-osmotic drag (EOD) coefficient of water. The value of the EOD coefficient is difficult to justify, and available literature data on this for Nafion membranes show scattering from in ex
...