MM

M. Moura de Salles Pupo

Authored

6 records found

Sn-Based Electrocatalyst Stability

A Crucial Piece to the Puzzle for the Electrochemical CO<sub>2</sub>Reduction toward Formic Acid

Nowadays, Sn-based electrocatalysts for the electrochemical CO2 reduction reaction (eCO2RR) toward formic acid have been reported to reach industrially relevant current densities and Faradaic efficiencies approaching 100%. However, electrocatalyst stability remains inadequate and ...
The electrochemical reduction of CO2 to fuels or commodity chemicals is a reaction of high interest for closing the anthropogenic carbon cycle. The role of the electrolyte is of particular interest, as the interplay between the electrocatalytic surface and the electrolyte plays a ...
Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5–8-fold) and also provide possibilities ...
Here, we combine CO2 laser heating and an ionic liquid solvent (i.e., methylimidazolium hydrogensulfate HMIM+ HSO4–) as an innovative route to produce Ti/Ru0.3Ti0.7O2 anodes. For comparison purposes, the anodes were also prepared using conventional thermal treatment (in a furnace ...
Here, we combine CO2 laser heating and an ionic liquid solvent (i.e., methylimidazolium hydrogensulfate HMIM+ HSO4–) as an innovative route to produce Ti/Ru0.3Ti0.7O2 anodes. For comparison purposes, the anodes were also prepared using conventional thermal treatment (in a furnace ...
SnO2-Based materials have attracted much attention in the electrochemical oxidation field due to their high electrocatalytic activity. However, efforts are still required to improve their physical and electrochemical properties. Here we employed a CO2 laser thermal process, as a ...