Circular Image

R. Kortlever

41 records found

For battery architectures that need a solid ion conductor with good contacting performance and high stability against electrochemical oxidation, polymerized ionic liquids (PIL) pose a valuable class of materials. The low conductivity of the binary PIL/ lithium salt system can be ...
In Fig. 4(e) on page 6733 of this article, the legends in the graph for faradaic efficiency of CO and C2+ were misplaced. The original figure should be replaced with an updated one. Note that this correction does not have any impact on the main idea and conclusion of this article ...
Electrochemical carbon dioxide reduction (CO2R) is an attractive route to use renewable electricity to convert CO2 emissions to carbon-based chemicals. Continuous-flow electrolyzers with gas diffusion electrodes (GDEs) allow for the CO2R at high reaction rates. In addition to the ...
Electrochemical CO2 reduction presents an opportunity to transform waste flue gas with water and renewable electricity into chemicals or fuels. However, the energy-intensive nature of purification of flue gas underscores the appeal of directly utilizing the flue gas streams conta ...
Carbon-supported nickel and nitrogen co-doped (Ni-N-C) catalysts have been extensively studied as selective and active catalysts for CO2 electroreduction to CO. Most studies have focused on adjusting the coordination structure of Ni-Nx active sites, while the impact of the carbon ...
Recent progress in the electrochemical reduction of CO2 (CO2RR) has led to notable breakthroughs in generating C2 compounds such as ethylene and ethanol. Nevertheless, the direct formation of C3 products encounters significant limitatio ...
Despite the huge efforts devoted to the development of the electrochemical reduction of CO2 (ECO2R) in the past decade, still many challenges are present, hindering further approaches to industrial applications. This paper gives a perspective on these challenges from a Process Sy ...
Electrochemical CO2 reduction is a promising way of closing the carbon cycle while synthesizing useful commodity chemicals and fuels. One of the possible routes to scale up the process is CO2 reduction at elevated pressure, as this is a way to increase the c ...
Electrochemical CO2 reduction in non-aqueous solvents is promising due to the increased CO2 solubility of organic-based electrolytes compared to aqueous electrolytes. Here the effect of nine different salts in propylene carbonate (PC) on the CO2 r ...
In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (A ...
Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent ...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen ...
Electrolytic bicarbonate conversion holds the promise to integrate carbon capture directly with electrochemical conversion. Most research has focused on improving the faradaic efficiencies of the system, however, the stability of the system has not been thoroughly addressed. Here ...
The analytical tools to quantify CO2RR products are often slow and have high limits of detection. As a result, researchers are forced to extend the duration of their experiments to accumulate sufficient product and surpass these detection limits. This slows down resear ...
Electrochemical ammonia synthesis via the nitrogen reduction reaction (NRR) has been poised as one of the promising technologies for the sustainable production of green ammonia. In this work, we developed extensive process models of fully integrated electrochemical NH ...
In this study, we experimentally screen a promising class of intermetallic alloys for the electrochemical reduction of CO2 toward hydrocarbon products. Based on previous DFT-based screening papers, combinations of strongly CO-binding metals such as iron, cobalt, and ni ...
Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5–8-fold) and also provide possibilities ...
Selective ion separation is a fundamental challenge with applications ranging from the manufacturing of pharmaceuticals & industrial salts to water desalination. In particular, the separation of formate, a primary product of electrochemical carbon dioxide reduction, has attra ...
Nitrogen-doped (N-doped) carbon catalysts have been widely studied for electrochemical CO2 reduction to CO. However, the correlation between the physicochemical properties of N-doped carbon catalysts and their electrocatalytic performance for the CO2RR is st ...
Electrochemical CO2 capture is promising for closing the carbon cycle but needs technological advances. In a recent issue of Nature Energy, a novel chemistry for electrochemical CO2 capture is presented, demonstrating low energy consumption and high purity w ...