TB
T.E. Burdyny
56 records found
1
The electrochemical CO2 reduction reaction (CO2RR) in a membrane electrode assembly (MEA) efficiently turns CO2 into a feedstock. However, unfavorable steady-state concentrations of ions in the cathode compartment result in salt formation if unadd
...
Low-temperature carbon dioxide electrolysis (CO2E) provides a one-step means of converting CO2 into carbon-based fuels using electrical inputs at temperatures below 100 °C. Over the past decade, an abundance of work has been carried out at ambient temperatur
...
CO2 electrolyzers show promise as a cleaner alternative to produce value-added chemicals. In the last decade, research has shifted from classifying CO2 reduction activity and selectivity as a catalytic property (zero-dimensional [0D]) to one that includes the complex interactions
...
Publisher Correction
Overcoming copper stability challenges in CO2 electrolysis (Nature Reviews Materials, (2025), 10.1038/s41578-025-00815-0)
Correction to: Nature Reviews Materialshttps://doi.org/10.1038/s41578-025-00815-0, published online 16 June 2025. In the version of the article initially published, in Fig. 4b, the labels “Gas-diffusion layer” and “Copper catalyst layer” were switched and have now been amended so
...
Operando characterization is crucial for understanding the selectivity and stability of the electrochemical CO2 reduction reaction (eCO2RR). Existing operando techniques normally use single-compartment cells operating at low currents. However, high current d
...
Copper and copper-based catalysts can electrochemically convert CO2 into ethylene and higher alcohols, among other products, at room temperature and pressure. This approach may be suitable for the production of high-value compounds. However, such a promising reaction i
...
The electrochemical reduction of carbon dioxide (CO2) presents an opportunity to close the carbon cycle and obtain sustainably sourced carbon compounds. In recent years, copper has received widespread attention as the only catalyst capable of meaningfully producing multi-carbon (
...
In Fig. 4(e) on page 6733 of this article, the legends in the graph for faradaic efficiency of CO and C2+ were misplaced. The original figure should be replaced with an updated one. Note that this correction does not have any impact on the main idea and conclusion of this article
...
Bipolar membranes in electrochemical CO2 conversion cells enable different reaction environments in the CO2-reduction and O2-evolution compartments. Under ideal conditions, water-splitting in the bipolar membrane allows for platinum-group-metal-free anode materials and high CO2 u
...
Electrochemical CO2 reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the lo
...
Covalent organic frameworks (COFs) are ideal platforms to spatially control the integration of multiple molecular motifs throughout a single nanoporous framework. Despite this design flexibility, COFs are typically synthesized using only two monomers. One bears the functional mot
...
Closing the Loop
Unexamined Performance Trade-Offs of Integrating Direct Air Capture with (Bi)carbonate Electrolysis
CO2 from carbonate-based capture solutions requires a substantial energy input. Replacing this step with (bi)carbonate electrolysis has been commonly proposed as an efficient alternative that coproduces CO/syngas. Here, we assess the feasibility of directly integrating
...
Electrochemical CO2 reduction aims to compete with Power-to-X alternatives but is well behind the scales of water electrolyzers and thermochemical reactors. In a recent issue of Nature Chemical Engineering, Crandall and co-workers demonstrate a 1000 cm2 tand
...
Electrolyte flooding in porous catalyst layers on gas diffusion electrodes (GDE) limits the stability and high-current performance of CO2 and CO electrolyzers. Here, we demonstrate the in situ electroreduction of graphene oxide (GO) to reduced graphene oxide (r-GO) within a silve
...
Using copper (Cu) as an electrocatalyst uniquely produces multicarbon products (C2+-products) during the CO2 reduction reaction (CO2RR). However, the CO2RR stability of Cu is presently 3 orders of magnitude shorter than required for commercial operation. One
...
Electrochemical ammonia (NH3) synthesis from nitrate (NO3−) offers a promising greener alternative to the fossil-fuel-based Haber-Bosch process to support the increasing demand for nitrogen fertilizers while removing environmental waste. Previous
...
CO2 electrolysis allows the sustainable production of carbon-based fuels and chemicals. However, state-of-the-art CO2 electrolysers employing anion exchange membranes (AEMs) suffer from (bi)carbonate crossover, causing low CO2 utilization and limiting anode choices to those based
...
Molecular catalysts play a significant role in chemical transformations, utilizing changes in redox states to facilitate reactions. To date molecular electrocatalysts have efficiently produced single-carbon products from CO2 but have struggled to achieve a carbon–carbon coupling
...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen
...
The electrochemical CO2 reduction reaction (CO2RR) is an attractive method to produce renewable fuel and chemical feedstock using clean energy sources. Formate production represents one of the most economical target products from CO2RR but is prim
...