Circular Image

A. Urakawa

51 records found

Integrated CO2 capture and reduction (CCR) using dual-function materials (DFMs) has emerged as a promising strategy for effective utilization of CO2. A thorough understanding of the reaction mechanisms of CCR using the DFMs is important for enhancing their p ...
Dry reforming of methane (DRM) was investigated using nanostructured core@shell materials, thermally activated with two different heating methods, namely conventional resistive heating and microwave. The core@shell catalysts were composed of β-SiC nanoparticles, with a mean parti ...
In Fig. 4(e) on page 6733 of this article, the legends in the graph for faradaic efficiency of CO and C2+ were misplaced. The original figure should be replaced with an updated one. Note that this correction does not have any impact on the main idea and conclusion of this article ...
To mitigate global warming and achieve a sustainable society, innovative technologies for efficient CO2 utilization are required. Integrated CO2 capture and reduction (CCR) using dual-function materials (DFMs) is favorable owing to its potentially low energy consumption, capital ...
Green hydrogen plays a crucial role in decarbonization and the future of low-carbon society. Still, its transport/distribution and cost of production, mainly realized by electrolysis, are major hurdles. Liquid H2 carriers reduce transport/distribution costs but add fur ...
Simple metal oxides exhibit noticeable catalytic activity in methane conversion reactions. However, their catalytic role in the selective activation of CH4 to more valuable products (CO, H2, olefins) is often masked by the highly oxidative reaction conditions and by complex catal ...
Utilising unexploited methane through its reaction with CO2 via the dry reforming of methane (DRM) has attracted attention. However, there are challenges related to catalyst deactivation and energy consumption due to the highly endothermic nature of the DRM; thus, microwave activ ...
The influence of nanostructures and interaction of Sn and Ir in oxygen evolution catalysts in a polymer electrolyte membrane electrolyzer were investigated. For this aim, two synthesis methods, namely, the one-step solution combustion method and the precipitation-deposition metho ...
When no hydrogen can reach the Pt catalyst in the anode for the hydrogen oxidation reaction (HOR) of an operating proton exchange membrane fuel cell (PEMFC), the anode potential increases and causes the cell potential to be reversed compared to normal operation conditions. During ...
Carbon dioxide (CO2) electrolysis on copper (Cu) catalysts has attracted interest due to its direct production of C2+ feedstocks. Using the knowledge that CO2 reduction on copper is primarily a tandem reaction of CO2 to CO and CO to C2+ products, we show that modulating CO concen ...
Insight into mechanisms of heterogeneously catalyzed reactions holds importance in the development and optimization of new catalytic materials. Yet, the approaches often used in such investigations heavily rely on assumptions concerning the reactor and kinetics. Herein we report ...
To introduce promotional H2O effects for both CH4 rate and C2 selectivity, the OH radical formation, catalyzed through H2O activation with O2 surface species, was critical for modeling selective Mn-K2WO4 ...

Integrated CO2 capture and reduction catalysis

Role of γ-Al2O3 support, unique state of potassium and synergy with copper

Carbon dioxide capture and reduction (CCR) process emerges as an efficient catalytic strategy for CO2 capture and conversion to valuable chemicals. K-promoted Cu/Al2O3 catalysts exhibited promising CO2 capture efficiency and highly sele ...
Multiphasic reaction of bicarbonate hydrogenation to form formate using homogeneous Ru PNP pincer catalyst in a continuous flow tubular reactor is reported. The reaction system consists of three phases. Catalyst is dissolved in toluene while potassium bicarbonate is dissolved in ...
Electrochemical ammonia (NH3) synthesis from nitrate (NO3) offers a promising greener alternative to the fossil-fuel-based Haber-Bosch process to support the increasing demand for nitrogen fertilizers while removing environmental waste. Previous ...

Spatiotemporal operando UV–vis spectroscopy

Development and mechanistic alternation of CO oxidation on Pt/Al2O3 on the reactor scale

Operando methodologies are widely used in heterogenous catalysis to understand unique state of catalyst materials emerging under specific reaction conditions and to establish catalyst structure-activity relationships. Recent studies highlight the importance of combining multiple ...
The continuous electrochemical NO reduction to ammonia in a PEM cell was investigated in this work. We used a ruthenium-based catalyst at the cathode and an iridium oxide catalyst at the anode. The highest ammonia faradaic efficiency was observed at 1.9 V cell voltage. Adjusting ...
In spectroscopy and diffraction methods, the signatures of catalytically active sites are often submerged by the contribution of spectator species. In some cases, the signals may also superimpose with each other, hindering proper peak identification. Rationalizing a reaction path ...
Dynamic coke-mediated dry reforming of methane (DC-DRM) is an unsteady-state strategy to overcome the limitations of co-feed operation, including the fast deactivation of the catalysts and the loss of valuable H2 in the reverse water gas-shift reaction. This paper prov ...
Oxidative dehydrogenation of ethane (ODHE) is an essential reaction in modern society to produce ethylene. The orthorhombic Mo3VOx catalyst (MoVO) was reported as one of the best catalysts for this reaction after a particular redox treatment to generate latt ...