Influences of Nanostructures of Sn and Ir for the Oxygen Evolution Reaction in Polymer Electrolyte Membrane Water Electrolysis
S. Bunea (TU Delft - ChemE/Catalysis Engineering)
M. Li (TU Delft - ChemE/Catalysis Engineering)
E. Demiröz (TU Delft - ChemE/Catalysis Engineering)
Peng Zeng (ETH Zürich)
Marc Georg Willinger (ETH Zürich)
A. Urakawa (TU Delft - ChemE/Catalysis Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The influence of nanostructures and interaction of Sn and Ir in oxygen evolution catalysts in a polymer electrolyte membrane electrolyzer were investigated. For this aim, two synthesis methods, namely, the one-step solution combustion method and the precipitation-deposition method with sodium borohydride reduction, were evaluated to prepare distinct nanostructures. Sn addition to Ir-based oxygen evolution reaction catalysts has been reported to yield materials with higher activity; however, in our case, this was observed only for Sn/Ir catalysts prepared by the precipitation-deposition method. The nanolayer of Sn/SnO2 deposited over metallic Ir particles was identified to enhance the interfacial contacts, resulting in synergistic interactions. By deconvolution of the polarization curves into constituting contributions, the performance improvement was attributed to the higher exchange current density of the Sn/Ir powder as a consequence of a higher number of surface reaction sites created by the Sn-Ir interactions.