Thermophysical Properties and Phase Behavior of CO2 with Impurities

Insight from Molecular Simulations

Journal Article (2024)
Author(s)

D. Raju (TU Delft - Engineering Thermodynamics)

M Ramdin (TU Delft - Engineering Thermodynamics)

TJH Vlugt (TU Delft - Engineering Thermodynamics)

Research Group
Engineering Thermodynamics
DOI related publication
https://doi.org/10.1021/acs.jced.4c00268
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Engineering Thermodynamics
Issue number
8
Volume number
69
Pages (from-to)
2735-2755
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich mixtures to compute thermophysical properties such as densities, thermal expansion coefficients, isothermal compressibilities, heat capacities, Joule-Thomson coefficients, speed of sound, and viscosities at temperatures of (235-313) K and pressures of (20-200) bar. We computed thermophysical properties of pure CO2 and CO2 rich mixtures with N2, Ar, H2, and CH4 as impurities of (1-10) mol % and showed good agreement with available Equations of State (EoS). We showed that impurities decrease the values of thermal expansion coefficients, isothermal compressibilities, heat capacities, and Joule-Thomson coefficients in the gas phase, while these values increase in the liquid and supercritical phases. In contrast, impurities increase the value of speed of sound in the gas phase and decrease it in the liquid and supercritical phases. We present an extensive data set of thermophysical properties for CO2 rich mixtures with various impurities, which will help to design the safe and efficient operation of CO2 transportation systems.