A Fully Homomorphic Encryption Scheme for Real-Time Safe Control
P.J. Stobbe (Student TU Delft)
T. Keijzer (TU Delft - Team Riccardo Ferrari)
R. Ferrari (TU Delft - Team Riccardo Ferrari)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Fully Homomorphic Encryption (FHE) has made it possible to perform addition and multiplication operations on encrypted data. Using FHE in control thus has the advantage that control effort for a plant can be calculated remotely without ever decrypting the exchanged information. FHE in its current form is however not practically applicable for real-time control as its computational load is very high compared to traditional encryption methods. In this paper a reformulation of the Gentry FHE scheme is proposed and applied on an FPGA to solve this problem. It is shown that the resulting FHE scheme can be implemented for real-time stabilization of an inverted double pendulum using discrete time control.