Syngas Production from Electrochemical Reduction of CO2: Current Status and Prospective Implementation

Journal Article (2017)
Author(s)

S. Hernández (Politecnico di Torino, Italian Institute of Technology)

M. Amin Farkhondehfal (Politecnico di Torino)

Francesc Sastre

M. Makkee (TU Delft - ChemE/Catalysis Engineering)

G. Saracco (Italian Institute of Technology)

Nunzio Russo (Politecnico di Torino)

Research Group
ChemE/Catalysis Engineering
Copyright
© 2017 S. Hernández, M. Amin Farkhondehfal, Francesc Sastre, M. Makkee, G. Saracco, Nunzio Russo
DOI related publication
https://doi.org/10.1039/C7GC00398F
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 S. Hernández, M. Amin Farkhondehfal, Francesc Sastre, M. Makkee, G. Saracco, Nunzio Russo
Research Group
ChemE/Catalysis Engineering
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gases emissions, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals or fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emissions and induce a “fuel switching” that exploits renewable energy sources. The aim of this brief review is to gather and critically analyse the main efforts that have been made and achievements that have been reached in the electrochemical reduction of CO2 for the production of CO. The main focus is on the prospective of exploiting the intrinsic nature of the electrolysis process, in which CO2 reduction and H2 evolution reactions can be combined, into a competitive approach, to produce syngas. Several well-stablished processes already exist for the generation of fuels and fine-chemicals from H2/CO mixtures of different ratios. Hence, the different kinds of electrocatalysts and electrochemical reactors that have been used for the CO and H2 evolution reactions have been analysed, as well as the main factors that influence the performance of the system from the thermodynamic, kinetic and mass transport points of view.

Files

Syngas_Production_from_electro... (pdf)
(pdf | 2.61 Mb)
- Embargo expired in 01-05-2018
License info not available