Busemann functions and equilibrium measures in last passage percolation models
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The interplay between two-dimensional percolation growth models and one-dimensional particle processes has been a fruitful source of interesting mathematical phenomena. In this paper we develop a connection between the construction of Busemann functions in the Hammersley last-passage percolation model with i.i.d. random weights, and the existence, ergodicity and uniqueness of equilibrium (or timeinvariant) measures for the related (multi-class) interacting fluid system. As we shall see, in the classical Hammersley model, where each point has weight one, this approach brings a new and rather geometrical solution of the longest increasing subsequence problem, as well as a central limit theorem for the Busemann function.