B-UAVC
Buffered Uncertainty-Aware Voronoi Cells for probabilistic multi-robot collision avoidance
More Info
expand_more
Abstract
This paper presents B-UAVC, a distributed collision avoidance method for multi-robot systems that accounts for uncertainties in robot localization. In particular, Buffered Uncertainty-Aware Voronoi Cells (B-UAVC) are employed to compute regions where the robots can safely navigate. By computing a set of chance constraints, which guarantee that the robot remains within its B-UAVC, the method can be applied to non-holonomic robots. A local trajectory for each robot is then computed by introducing these chance constraints in a receding horizon model predictive controller. The method guarantees, under the assumption of normally distributed position uncertainty, that the collision probability between the robots remains below a specified threshold. We evaluate the proposed method with a team of quadrotors in simulations and in real experiments.
Files
Download not available