Learning-enabled multi-modal motion prediction in urban environments
Vinicius Trentin (Universidad Politécnica de Madrid)
Chenxu Ma (Student TU Delft)
Jorge Villagra (Universidad Politécnica de Madrid)
Z. Al-Ars (TU Delft - Computer Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Motion prediction is a key factor towards the full deployment of autonomous vehicles. It is fundamental in order to assure safety while navigating through highly interactive complex scenarios. In this work, the framework IAMP (Interaction-Aware Motion Prediction), producing multi-modal probabilistic outputs from the integration of a Dynamic Bayesian Network and Markov Chains, is extended with a learning-based approach. The integration of a machine learning model tackles the limitations of the ruled-based mechanism since it can better adapt to different driving styles and driving situations. The method here introduced generates context-dependent acceleration distributions used in a Markov-chain-based motion prediction. This hybrid approach results in better evaluation metrics when compared with the baseline in the four highly-interactive scenarios obtained from publicly available datasets.