Integrability properties of quasi-regular representations of N A groups
Jordy Timo van Velthoven (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Let G = N ⋉ A, where N is a graded Lie group and A = R+ acts on N via homogeneous dilations. The quasi-regular representation π = indGA(1) of G can be realised to act on L2(N). It is shown that for a class of analysing vectors the associated wavelet transform defines an isometry from L2(N) into L2(G) and that the integral kernel of the corresponding orthogonal projector has polynomial off-diagonal decay. The obtained reproducing formula is instrumental for obtaining decomposition theorems for function spaces on nilpotent groups.